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ABSTRACT
Audio signals are susceptible to various types of quality degradation, with clipping be-
ing one of the most common and problematic distortions. This Thesis addresses the
restoration of audio signals corrupted by nonlinear distortions and presents the contri-
bution in the field of sparsity-based audio restoration algorithms, with the main focus
on audio declipping and dequantization. The first part of the Thesis deals with the
problem of audio declipping and presents several sparsity-based approaches, containing
both the original research and adopted algorithms, which have been reimplemented or
modified. The performance of the algorithms is evaluated using the Signal-to-Distortion
ratio, as well as perceptually motivated metrics of sound quality. Then, attention is
paid on incorporating psychoacoustic information into declipping by weighting the trans-
form coefficients. Three possible constructions of the weights are presented and it is
shown that with correctly chosen weights, it is possible to significantly improve the per-
formance of the algorithms, which achieve state-of-the-art restoration quality with low
computational complexity. Special focus is also paid on declipping methods that allow
a deviation in the reliable part. In that direction, the Thesis studies the perceptual ef-
fects of plain replacement of the reliable samples, then identifies its main weaknesses
and introduces methods to compensate the discovered negative effects. It is shown
that using this technique, it is possible to enhance the performance of such declipping
algorithms without a significant increase in computational complexity. Finally, selected
declipping algorithms are adopted to the problem of audio dequantization. The Thesis
is accompanied by repositories containing implementations of the presented methods.
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ABSTRAKT
Audio signály jsou náchylné k různým typům poškození, přičemž jedním z nejčastějších a
nejproblematičtějších druhů poškození je clipping. Tato dizertační práce se zaměřuje na
rekonstrukci zvukových signálů poškozených nelineárním zkreslením s hlavním zaměřením
na declipping a dekvantizaci a popisuje vědecký přínos v této oblasti s využitím metod
založených na řídké reprezentaci. První část dizertační práce se zabývá problematikou
declippingu a představuje několik přístupů založených na řídkých reprezentacích signálů.
Součástí je jak originální výzkum, tak i převzaté algoritmy, které však byly v rámci této
práce reimplementovány nebo modifikovány. Kvalita výstupů rekonstrukčních algoritmů
je vyhodnocena jak pomocí ukazatele SDR, tak i s využitím percepčně založených me-
trik. V další části se práce zaměřuje na zakomponování psychoakustiky do problému
declippingu pomocí váhování transformačních koeficientů s třemi navrženými způsoby
konstrukce vah. Je zde dokázáno, že při správně zvolených vahách je možné výrazně
zlepšit kvalitu rekonstrukce a vyrovnat se tak nejlepším algoritmům při zachování nízké
výpočetní náročnosti. V poslední části práce je pozornost je také věnována metodám
umožňujícím odchylku ve spolehlivé části signálu. V tomto směru práce zkoumá per-
cepční vliv prostého nahrazení těchto spolehlivých vzorků, identifikuje jeho hlavní nevý-
hody a následně představuje metody, které kompenzují negativní efekty způsobené tímto
nahrazením. Je ukázáno, že s využitím těchto technik je možné bez významného navýšení
výpočetní náročnosti výrazně zlepšit dosaženou kvalitu rekonstrukce. Vybrané algoritmy
jsou rovněž aplikovány na problém audio dekvantizace. Součástí práce jsou repozitáře
obsahující implementace všech představených metod.
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Audio, clipping, kvantizace, declipping, dekvantizace, restaurování, řídkost, inverzní pro-
blémy, optimalizace, psychoakustika
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Introduction
Sound and music has always been a significant part of human culture, resulting in
the natural need of recording and storing the music information. However, audio
recordings, and audio signals in general, are by nature disposed to different types
of quality degradation. The degradations may arise directly during the recording
process, they can be caused by the damage of the medium (such as the wax cylinder,
LP, CD, etc.) or they can occur during transmission or streaming of the audio file.

There are many types of signal corruption. One of the most common is noise,
which is usually described as an interference of the useful signal with an undesired
signal that carries no useful information. According to the nature of the noise,
several types of noise, such as hiss, hum, rumble, or crackle can be distinguished.
Another very common type of signal degradation is clipping, which causes limitation
of the dynamic range and thus loss of information in the peaks of the signal. Clipping
usually occurs during the recording of the audio signal, when the dynamic range of
the signal exceeds the available dynamic range of the recording device. The loss of
samples can also be considered as a type of audio signal degradation. It can occur
during the transmission of the audio signal over a communication network or due
to the damage of the storage medium, for example.

Degradation of the signal does not necessarily need to be caused by accident.
It can also be performed on purpose in order to reduce the size of the audio file.
One may mention the quantization of the signal samples in the time domain or the
lossy audio compression, for instance, where the quantization is usually done in the
transformed domain.

Typically, the corruption of the signal is irreversible and besides the percep-
tual quality of audio, it also affects several other fields such as automatic speech
recognition in voice-controlled systems, medical diagnosis based on patient’s speech
analysis, compression and coding of audio signals in transmission systems, and many
more. Therefore, to achieve a sufficient (or at least improved) perceptual quality, or
to enhance the performance of systems that work with corrupted audio signals, it is
necessary to perform restoration of the damaged audio signal.

The restoration tasks are usually formulated as inverse problems, handling each
type of degradation individually; the restoration of the noisy signal is referred to as
denoising, computing the missing samples is called inpainting,1 and recovery of the
clipped or quantized samples is known as declipping and dequantization, respectively.

Even though the restoration tasks can be approached in a similar way, each task
is rather specific and requires satisfying different conditions based on the type of
the restoration task. For this reason, the Thesis is mainly focused on clipping as

1The term inpainting comes originally from the image processing field.
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one of the most common type of audio signal degradation and the corresponding
restoration task—declipping. However, part of the Thesis is also devoted to the
adaptation of declipping algorithms to the problem of audio dequantization.

Focusing purely on declipping, there are several commonly available tools that
are able to find and repair clipped segments of audio signals. For instance, we can
mention the Clip Fix tool available in the popular freeware audio editor Audacity,
De-clip plugin for the audio restoration software iZotope RX, or DeClipper effect
in Adobe Audition. It is also possible to find plugins for digital audio worksta-
tions (DAW) that can declip the audio track in real time, such as Accusonus ERA
De-Clipper, or Acon Digital DeClip. Nevertheless, the greatest weakness of these
available declipping tools is that they are primarily designed to be fast, simple, and
user-friendly and thus they are usually based on some kind of interpolation, which
is suitable only for the restoration of mildly clipped signals. In the case of moderate
or severe clipping, these tools cannot fully remove the negative effects of clipping
and may even produce artifacts that might degrade the perceived audio quality even
more than the clipping itself. This further motivates scientists and audio engineers
to develop new audio declipping methods that are able to deliver the best possible
restoration quality with the lowest possible computational complexity.

This work builds on previous research in the field of audio restoration and aims
at proposing and implementing effective audio restoration methods with the pri-
mary focus on audio declipping and dequantization. First, Chapter 1 introduces
the basic concepts and notations and provides a brief review of the preliminary
knowledge. Then, Chapter 2 describes in detail the clipping and quantization and
formulates the respective inverse problems, i.e., declipping and dequantization. The
state of the art in declipping and dequantization is presented in Chapter 3, followed
by the summarization of the aims and objectives of this Thesis, given in Chap-
ter 4. The methodology of the performed experiments is described in Chapter 5.
Chapter 6 forms one of the main contributions of this Thesis and is devoted to
sparsity-based audio declipping algorithms. The next two chapters build on the
presented audio declipping algorithms and extend them by incorporating additional
information about the signal. Chapter 7 presents the possibilities of incorporating
psychoacoustic information into declipping and Chapter 8 deals with the possibility
of improving the performance of inconsistent declipping methods by reusing certain
parts of the clipped signal in postprocessing. Finally, Chapter 9 aims at adopting
selected audio declipping methods to the problem of audio dequantization, followed
by Conclusion, which summarizes the Thesis and discusses possible future directions
of further research in the field.
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1 Concepts and notation
This chapter provides a basic overview and preliminary knowledge to cover all the
topics in the rest of the Thesis. It includes a description of the notation (Sec. 1.1),
definitions of used vector and matrix norms (Sec. 1.2), an essential theory about
vector spaces, bases, and frames (Sec. 1.3), an introduction to sparse representa-
tions (Sec. 1.4) and optimization algorithms (Sec. 1.5), and a description of the
Discrete Gabor Transform (Sec. 1.6). Finally, Sec. 1.7 discusses the basic principles
of psychoacoustics that will be exploited later in the Thesis.

1.1 Notation
In this Thesis, scalar variables are denoted in italics, e.g., 𝑚, 𝑁 , vectors using bold
lowercase letters, e.g., x, y. Unless stated otherwise, vectors are considered as col-
umn vectors using one-based indexing, e.g., x = [𝑥1, 𝑥2, . . . , 𝑥𝑛]⊤.

The cardinality of a set, which represents the number of elements in the set, is
denoted by vertical bars, like absolute value signs, e.g., |{4, 7, −3, 0, 5}| = 5.

Next, we define the support of the vector, supp(x) = {𝑖 | 𝑥𝑖 ̸= 0}, as a set of
indices, where the vector contains nonzero entries, for example if x = [0, 0, 2, 7, 0, 4]⊤,
then supp(x) = {3, 4, 6} and |supp(x)| = 3.

Matrices are denoted using bold uppercase letters, e.g., A, B and their entries
with the respective lowercase letters, i.e., 𝑎𝑖,𝑗, 𝑏𝑖,𝑗, representing the value at the 𝑖-th
row and 𝑗-th column. The symbol * is used for the Hermitian transpose A*, which
is a complex conjugate of a complex matrix A, defined as

A* = (Ā)⊤, (1.1)

where 𝑧 denotes the complex conjugate of a complex number 𝑧 ∈ C. For 𝑧 = 𝑎+𝑏𝑖 is
the complex conjugate defined as 𝑧 = 𝑎−𝑏𝑖. For matrices, the notation Ā represents
the element-by-element conjugation of A.

Vector spaces will be denoted as V,R𝑁 , or C𝑀×𝑁 , where the upper index repre-
sents the dimensions of the vector space.

Linear operators will use the italics notation, such as 𝐿. Note, however, that
in the finite dimension case 𝐿 : C𝑁 → C𝑀 , the linear operator can be represented
by a matrix of size 𝑀 × 𝑁 . The adjoint operator 𝐿* is on a vector space V with
a scalar product ⟨·, ·⟩ defined according to

⟨𝐿x, y⟩ = ⟨x, 𝐿*y⟩ ∀ x, y ∈ V. (1.2)

The adjoint operator 𝐿* will use the same notation as Hermitian transpose for
matrices, since in the finite dimension case, they represent the same operation.
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1.2 Norms
Before the introduction to sparse representations and how to “measure” sparsity,
it is necessary to define norms. In mathematics, a norm is a function assigning
a nonnegative real number to a vector from a real or complex vector space according
to a number of axioms.

1.2.1 Vector norms

For an arbitrary vector x ∈ C𝑁 , the ℓ𝑝-norm can be defined as [17]

‖x‖𝑝 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑁∑︁
𝑖=1

|𝑥𝑖|𝑝 for 0 < 𝑝 < 1,

(︃
𝑁∑︁

𝑖=1
|𝑥𝑖|𝑝

)︃1/𝑝

for 1 ≤ 𝑝 < ∞.

(1.3)

In a strict sense, it is a norm only in the case 1 ≤ 𝑝 < ∞; however, for Thesis
purposes, we will use the term “norm” for all 𝑝.

One of the most commonly used norms is the ℓ2-norm, also known as the Eu-
clidean norm, defined as

‖x‖2 =

⎯⎸⎸⎷ 𝑁∑︁
𝑖=1

|𝑥𝑖|2. (1.4)

A limit case of (1.3) is the ℓ0-norm representing the number of nonzero elements
of the vector:

‖x‖0 = |supp(x)|. (1.5)

Very important is also the ℓ1-norm, also called Manhattan or Taxicab norm, which
returns the sum of the absolute values of the vector elements, formally

‖x‖1 =
𝑁∑︁

𝑖=1
|𝑥𝑖|. (1.6)

Another special case is also the ℓ∞-norm returning the maximum absolute element
of the vector:

‖x‖∞ = max
𝑖

|𝑥𝑖|. (1.7)

To better imagine the norms, see the illustration in Fig. 1.1, where the borders
of the unit balls for commonly used norms are depicted in R2 vector space. The
unit ball 𝐵𝑁

𝑝 is for an arbitrary ℓ𝑝 norm defined as

𝐵𝑁
𝑝 =

{︁
x ∈ C𝑁 | ‖x‖𝑝 ≤ 1

}︁
. (1.8)
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𝑝 = 0 𝑝 = 1
2 𝑝 = 1 𝑝 = 2 𝑝 = ∞

Fig. 1.1: Illustration of the unit ball borders in R2, i.e., {x ∈ R2 | ‖x‖𝑝 = 1}.

1.2.2 Matrix norms

Norms can also be applied to matrices. One of the most commonly used matrix
norms is the Frobenius norm, which represents the energy of matrix entries and is
formally defined as [17]

‖A‖F =

⎯⎸⎸⎸⎷ 𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

|𝑎𝑖𝑗|2. (1.9)

In fact, the Frobenius norm is a special case of the general (𝑝, 𝑞)-mixed norm, where
𝑝, 𝑞 = 2. The general (𝑝, 𝑞)-mixed norm is for 𝑝, 𝑞 ≥ 1 defined as [17]

‖A‖𝑝,𝑞 =
⎛⎝ 𝑁∑︁

𝑗=1

(︃
𝑀∑︁

𝑖=1
|𝑎𝑖𝑗|𝑝

)︃ 𝑞
𝑝
⎞⎠

1
𝑞

. (1.10)

This norm can be understood as applying the ℓ𝑝-norm to every column of A and
then applying the ℓ𝑞-norm on the resulting vector of length 𝑁 . The most commonly
used mixed matrix norms are ℓ2,1 and ℓ1,2.

1.2.3 Operator (spectral) norm

Having a linear operator 𝐿 between Hilbert spaces, its operator (spectral) norm is
defined as [17]

‖𝐿‖ = ‖𝐿‖OP = sup
x∈C𝑁, x ̸=0

‖𝐿x‖2

‖x‖2
. (1.11)

For operator norm holds that ‖𝐿‖2 = ‖𝐿*𝐿‖ = ‖𝐿𝐿*‖, where 𝐿* is a Hermitian
adjoint to operator 𝐿, and it can be shown that ‖𝐿‖2 is equal to the largest singular
value of the operator 𝐿*𝐿 [17].
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1.3 Vector spaces, bases, frames
Vector space is an algebraic structure, which fulfills prescribed axioms and whose
basic elements are vectors. In this Thesis, we will use only vectors of finite length
𝑁 , and therefore only finite vector spaces of dimension 𝑁 will be considered.

Vector space V is determined by a system of generators, which is a set of vectors
E = {e1, e2, . . . , e𝑁} in V. These vectors span the whole space, meaning that any
vector x ∈ V can be expressed as a linear combination of the generator vectors:

x = 𝑐1e1 + 𝑐2e2 + · · · + 𝑐𝑁e𝑁 = Ec, (1.12)

where the scalars 𝑐𝑛 are called coordinates. If the number of generators is larger than
the dimension of the vector space, then one vector can have more representations.
Such a system is called overcomplete.

A minimal system of linearly independent generators is called basis. In a vector
space of dimension 𝑁 , the basis consists of 𝑁 linearly independent vectors.

In practice, the most commonly used bases are orthogonal bases and orthonormal
bases. In the orthogonal basis B = {b1, . . . , b𝑁} it holds that the basis vectors are
perpendicular to each other. Using the scalar product of vectors denoted ⟨·, ·⟩, this
condition can be written as

⟨b𝑖, b𝑗⟩ = 0 for 𝑖 ̸= 𝑗, ⟨b𝑖, b𝑖⟩ ≠ 0. (1.13)

Orthonormal basis is an orthogonal basis, whose basis vectors are unit vectors,
thus, in addition to conditions (1.13), it also holds that ‖b𝑖‖2 = 1.

Expanding the basis with additional vectors creates a redundant system of gener-
ators that become linearly dependent. This system is more flexible and less restricted
than bases, nevertheless, it is also computationally more demanding with a risk of
numerical instability [17].

A redundant system of generators F = {f𝑘}𝑘∈{1,...,𝐾}, f𝑘 ∈ C𝐿 is called a frame
in C𝐿 if exist constants 0 < 𝐴 ≤ 𝐵 < ∞ such that it holds

𝐴‖x‖2
2 ≤

𝐾∑︁
𝑘=1

|⟨x, f𝑘⟩|2 ≤ 𝐵‖x‖2
2, ∀x ∈ V. (1.14)

Elements of the frame f𝑘 are usually called atoms, and constants 𝐴, 𝐵 are referred
to as frame bounds. A frame is redundant if 𝐾 > 𝐿 and it is referred to as tight
if 𝐴 = 𝐵. Moreover, if 𝐴 = 𝐵 = 1, we call such frames as Parseval tight frames.
The frame operator in the case of tight frames is diagonal, i.e., FF* = 𝐴 · 𝐼𝑑. For
Parseval tight frames, it is an identity.
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1.4 Sparse representations
Sparse representations intend to represent signals with as few significant coefficients
of a representation system as possible. It is important in many signal processing
applications, such as compression. The possibility to store only a few significant
coefficients instead of all signal samples brings a great compression rate with almost
unnoticeable loss of information [18]. In fact, the majority of currently used com-
pression standards exploit compression in the transformed domain. As examples,
it is possible to mention the image coding format JPEG [19] or the audio coding
standard MPEG Audio Layer III, commonly known as MP3 [20].

Supposing that the signal comes from a sensor or a sensing system, it would
be very beneficial to make it acquire already compressed information [18]. Such
an approach is called compressed sensing and in the recent decade gained a lot of
attention. As an example, it can be used in MRI to accelerate data acquisition by
acquiring less data through undersampling of 𝑘-space [21].

The sparse modeling has also found its application in inverse problems, i.e.,
reconstruction tasks, where a signal has been damaged and the reconstructed sig-
nal is obtained by finding the sparse solution, possibly with respect to additional
constraints based on the respective damage and type of signal. As typical inverse
problems for audio signals, it is possible to mention inpainting, declipping, denoising,
dequantization, dereverberation, etc.

The actual term sparsity concerns the number of nonzero coefficients in a vector.
A vector of length 𝑁 can be called 𝑘-sparse, if it contains 𝑘 nonzero elements, where
𝑘 < 𝑁 , or even 𝑘 ≪ 𝑁 . Sparsity is usually measured with the ℓ0-norm, which
returns the sparsity 𝑘. A possible disadvantage of this norm is its nonconvexity,
therefore in some applications it is common to replace it with another norm—most
usually the ℓ1-norm as the closest convex norm.

The goal of the sparse approximation is to model a known signal x ∈ R𝑁 with
a linear combination of as few elements from a dictionary as possible. This basic
sparse representation problem is formulated as

arg min
z∈C𝑃

‖z‖0 subject to x = Dz, (1.15)

where D is a 𝑁 × 𝑃 matrix (usually considered as full-rank) with 𝑁 ≤ 𝑃 , and
z ∈ C𝑃 is referred to as signal coefficients. Such an approach, where the signal is
approximated by a linear combination of a few columns of D is called a synthesis
approach. The name “synthesis” comes from the relation x = Dz, with the obvious
interpretation that the model describes a way to synthesize a signal [22].

An alternative perspective, where the signal x is “sparsified” with by 𝑃 × 𝑁
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matrix A, is called the cosparse (analysis) approach and is formulated as

arg min
x∈R𝑁

‖𝐴x‖0 subject to Ax = z. (1.16)

Both models are different unless 𝑁 = 𝑃 and A = D−1. In other words, the models
are equivalent if the transformation matrices form bases in R𝑁 . For frames, however,
they differ, and the respective optimization tasks may deliver different results.

The matrix D can also be interpreted as the synthesis operator 𝐷 : C𝑃 → C𝑁 .
Similarly, the analysis matrix A can be seen as the analysis operator 𝐴 : C𝑁 → C𝑃 .
In this Thesis, the operator notation will be preferred over the matrix notation.

In practical audio processing tasks, Discrete Fourier Transform (DFT) or Dis-
crete Gabor Transform (DGT) are usually used in place of the analysis and synthesis
operators, respectively. Nevertheless, it is possible to use any kind of transform. For
example, transforms based on human auditory modeling like ERBlets are beneficial
in audio processing.

The sparse coefficients z are in the problems (1.15) and (1.16) considered inde-
pendently from each other (so-called single coefficient sparsity). However, it is also
possible to introduce some kind of structure and form the coefficients into groups.
This approach is referred to as structured sparsity [23].

One of the most common types is group sparsity, which considers non-overlapping
groups of coefficients, and then the entire groups are either selected or discarded.
This prior is typically enforced by minimizing mixed norms, such as the ℓ1,2-norm
(See Eq. (1.10) for the definition).

Extending the group sparsity to the case of possibly overlapping groups, where
a single coefficient may belong to several groups, leads to an approach called social
sparsity. To enforce this prior, appropriate specific sparsity promoting operators
with dependencies between coefficients are typically used [23, 24, 25].

1.5 Algorithms
Finding the true “sparsest” solution to the tasks (1.15) or (1.16) is NP-hard since
it would require iterating over

(︁
𝑁
𝑘0

)︁
possibilities, assuming there exists a 𝑘0-sparse

solution. Such a task can not be solved in polynomial time, which is computationally
prohibitive when 𝑁 is large. Therefore, there is a whole range of algorithms that
are able to (in most cases iteratively) find an approximate solution to the respective
sparsity-based optimization problem. These algorithms can be roughly divided into
three categories [17]:

• Greedy algorithms, which are based on a principle, that in each iteration they
find one (or possibly more) “most important” atom. This already selected
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atom remains part of the solution and cannot be removed from the solution
in the subsequent iterations. The biggest advantage of these algorithms is
their relative simplicity. Finding the global optimum is usually not granted,
however, there are some works (e.g., [26]) that provide sufficient conditions
under which the global minimum can be reached. As a typical representative
of greedy algorithms, it is possible to mention Matching Pursuit (MP) [27],
Orthogonal Matching Pursuit (OMP) [28], and their derivatives.

• Relaxation algorithms are based on solving the “relaxed” variant of the opti-
mization tasks (1.15) and (1.16), where the nonconvex ℓ0-norm is replaced with
the closest convex norm—the ℓ1-norm. When some criteria are met, the re-
laxed variant of the optimization problem may lead to an equivalent solution of
the original tasks [29, 30]. From the category of relaxation algorithms, we men-
tion the Basis Pursuit (BP) [31], modified Least Angle Regression (LARS) [32],
Iterative Reweighted Least Squares (IRLS) [33], or the Dantzig Selector [34].
Since ℓ1-norm is convex, it is also possible to use proximal algorithms, which
will be mostly used in this Thesis and are described in more detail in Sec. 1.5.1.

• Other algorithms, i.e., algorithms not falling into either the greedy or relax-
ation category. This includes algorithms based on thresholding [35], or hybrid
algorithms combining greedy and relaxation approaches (for instance A*OMP
[36]). The further-used declipping algorithm SPADE can also fall into this
category since it combines standard optimization with heuristics. The whole
scheme is built on the Alternating Direction Method of Multipliers (ADMM)
procedure, which is described in Sec. 1.5.6.

In this section, the general idea of proximal algorithms will be explained, includ-
ing proximal operators and examples of commonly used proximal operators, followed
by proximal algorithms further used in this Thesis.

1.5.1 Proximal algorithms

Proximal algorithms are iterative algorithms that, under certain conditions, provide
a sequence of vectors {x𝑘} converging to the minimizer of a sum of convex functions∑︀

𝑖 𝑓𝑖(x) by sequential evaluation of the proximal operators associated with each of
the summands, 𝑓𝑖. The most often used and studied are proximal algorithms that
can minimize the sum of two convex functions, 𝑓(x) + 𝑔(x), such as the Forward-
backward algorithm [37] or the Douglas–Rachford algorithm [38], however, there
exist algorithms for minimizing the sum of arbitrary many functions [39].
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Proximal operators

Proximal operators are the key components in proximal algorithms. Let R̃ denote
the extended real line, i.e., R̃ = R∪{−∞, ∞}. Then a proximal operator of a convex
function 𝑓 : C𝑁 → R̃ maps a vector x ∈ C𝑁 to another vector in C𝑁 , such that [40]

prox𝑓 (x) = arg min
y∈C𝑁

𝑓(y) + 1
2‖x − y‖2

2. (1.17)

The proximal operator is a generalization of a projection operator onto a convex
set. When we identify a function 𝑓 with the indicator function 𝜄𝐶 of such a set 𝐶,
in this case

𝑓(x) = 𝜄𝐶(x) =
⎧⎨⎩ 0 for x ∈ 𝐶,

+∞ for x /∈ 𝐶,
(1.18)

the proximal operator prox𝜄𝐶
becomes a projection onto 𝐶, i.e., proj𝐶 . Proximal

operators of convex lower semicontinuous functions are characterized in the work of
Moreau [41].

Apart from the projection onto a convex set, also the proximal operator of the
distance function from the convex set will be used. The distance function 𝑑𝐶(x)
computes the distance of the vector x from the convex set 𝐶, such that

𝑑𝐶(x) = ‖x − proj𝐶(x)‖2, (1.19)

and the proximal operator of 𝛼
2 𝑑2

𝐶 [42] is

prox𝛼𝑑2
𝐶/2(x) = 1

𝛼 + 1(𝛼proj𝐶(x) + x), (1.20)

which is a convex combination of a point and its projection onto 𝐶.
A proximal operator of ℓ1-norm will also be required because it is used to enforce

the signal sparsity. The prox‖x‖1 takes the form of soft thresholding, which can be
computed as

soft𝜏 (x) = sgn(x) ⊙ max(|x| − 𝜏, 0), (1.21)

where ⊙ represents the elementwise product of vectors.
Finally, given a convex function 𝑓 , the proximal operator of Fenchel–Rockafellar

conjugate 𝑓 * can be computed using the Moreau identity as [40]

prox𝛼𝑓*(x) = x − 𝛼 prox𝑓/𝛼(x/𝛼) for 𝛼 ∈ R+. (1.22)

1.5.2 Douglas–Rachford algorithm

As it was stated before, proximal algorithms are suited for minimizing a sum of
convex functions. In the most common case of minimizing two convex functions 𝑓

and 𝑔, the following optimization task is obtained:

min
x

𝑓(x) + 𝑔(x). (1.23)
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If 𝑔 : R𝑁 → R is differentiable and its gradient ∇𝑔 is 𝛽-Lipschitz continuous for
some real constant 𝛽 > 0, i.e., the following condition [43] is fulfilled:

‖∇𝑔(x) − ∇𝑔(x′)‖2 ≤ 𝛽‖x − x′‖2, ∀ x, x′ ∈ R𝑁 , (1.24)

then the solution to problem (1.23) can be approximated by the Forward-backward
algorithm, which is characterized by the following iterative procedure [39]:

x(𝑖+1) = prox𝛾(𝑖)𝑓⏟  ⏞  
backward step

(x(𝑖) − 𝛾(𝑖)∇𝑔(x(𝑖)))⏟  ⏞  
forward step

. (1.25)

The differentiability condition on 𝑔 can be in some cases limiting. However, the
gradient ∇𝑔 in the forward step of (1.25) can be replaced with a proximal operator.
Such an algorithm is called Douglas–Rachford algorithm, and its solution is for
𝛾 ∈ (0, +∞) characterized by the following two steps [39]:

x = prox𝛾𝑔y
prox𝛾𝑔y = prox𝛾𝑓 (2prox𝛾𝑔y − y).

(1.26)

The complete Douglas–Rachford algorithm is prescribed in Alg. 1.

Algorithm 1: Douglas–Rachford algorithm
Input: Set starting point y(0).
Set parameters 𝜀 ∈ (0, 1), 𝛾 > 0.
for 𝑖 = 0, 1, . . . do

x(𝑖) = prox𝛾𝑔y(𝑖)

𝜆(𝑖) ∈ [𝜀, 2 − 𝜀]
y(𝑖+1) = y(𝑖) + 𝜆(𝑖)

(︁
prox𝛾𝑓 (2x(𝑖) − y(𝑖)) − x(𝑖)

)︁
return x(𝑖+1)

1.5.3 Beck–Teboulle algorithm

The sum of two convex functions 𝑓 and 𝑔, where the latter is assumed to be dif-
ferentiable with a Lipschitz gradient (see problem (1.23)), can be minimized using
the Forward-backward algorithm. When the proximal operator prox𝑓 is a soft-
thresholding step (1.21), i.e., 𝑓 = ‖ · ‖1, the method is commonly referred to as
Iterative Shrinkage/Thresholding Algorithm (ISTA).

The convergence of ISTA-type algorithms is usually quite slow. Therefore, some
effort has been made to accelerate the algorithm. Combining the ISTA approach
with Nesterov’s accelerated gradient descent [44] leads to the accelerated Fast ISTA
(FISTA), which was introduced by Beck and Teboulle in [45]. The general algorithm,
where prox𝑓 is the proximal operator of an arbitrary function 𝑓 , is usually referred
to as Beck–Teboulle algorithm [39], which is described in Alg. 2.
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Algorithm 2: Beck–Teboulle algorithm
Input: Set starting point y(0).
Set parameter 𝑡(0) = 1.
for 𝑖 = 0, 1, . . . do

x(𝑖+1) = prox 1
𝛽

𝑓

(︁
y(𝑖) − 1

𝛽
∇𝑔(y(𝑖))

)︁
𝑡(𝑖+1) = 1+

√
1+4(𝑡(𝑖))2

2
y(𝑖+1) = x(𝑖+1) +

(︁
𝑡(𝑖)−1
𝑡(𝑖+1)

)︁
(x(𝑖+1) − x(𝑖))

return y(𝑖+1)

1.5.4 Chambolle–Pock algorithm

Composing a linear operator 𝐿 with one of the convex functions in the optimization
problem (1.23) leads to a more general problem

min
x

𝑓(x) + 𝑔(𝐿x). (1.27)

For this type of problem, the Douglas–Rachford algorithm is not general enough
and one must choose a more complex algorithm, for example the Chambolle–Pock
algorithm [46], which is provided in Alg. 3.

Algorithm 3: Chambolle–Pock algorithm
Input: Set starting points x(0), y(0).

Set parameters 𝜁, 𝜎 > 0 and 𝜃 ∈ (0, 1].
Set x̄(0) = x(0).
for 𝑖 = 0, 1, . . . do

y(𝑖+1) = prox𝜎𝑔*(y(𝑖) + 𝜎𝐿x̄(𝑖))
x(𝑖+1) = prox𝜁𝑓 (x(𝑖) − 𝜁𝐿*y(𝑖+1))
x̄(𝑖+1) = x(𝑖+1) + 𝜃(x(𝑖+1) − x(𝑖))

return x̄(𝑖+1)

The Chambolle–Pock algorithm assumes both functions to be convex, lower
semicontinuous, and possibly nonsmooth. The proximal operator of a Fenchel–
Rockafellar conjugated function 𝑔, i.e., prox𝜎𝑔* , can be computed with no increase
of the computational complexity using the Moreau identity (see Eq. (1.22)).

The algorithm is proved to converge for 𝜃 = 1 when 𝜁𝜎‖𝐿‖2 < 1. Nevertheless,
in [43] the authors allowed a value of 𝜃 close to 2, which can significantly speed up
the convergence.
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1.5.5 Condat–Vũ algorithm

Even more generic algorithm tailored to approximate solution to the following op-
timization problem

arg min
x∈R𝑁

𝑓(x) + 𝑔(x) +
𝑀∑︁

𝑚=1
ℎ𝑚(𝐿𝑚x), (1.28)

was independently introduced by L. Condat [43] and B. C. Vũ [47], thus we will refer
to this algorithm as Condat–Vũ algorithm. Here, the function 𝑓 is assumed to be
differentiable with Lipschitz continuous gradient. The algorithm is portrayed in
Alg. 4.

Algorithm 4: Condat–Vũ algorithm
Input: Set starting points x(0), u(0)

1 , . . . , u(0)
𝑀 .

Set parameters 𝜏 > 0, 𝜎 > 0, 𝜌 > 0.
for 𝑖 = 0, 1, . . . do

x̃(𝑖+1) = prox𝜏𝑔

(︃
x(𝑖) − 𝜏∇𝑓(x(𝑖)) − 𝜏

𝑀∑︀
𝑚=1

𝐿*
𝑚u(𝑖)

𝑚

)︃
x(𝑖+1) = 𝜌 x̃(𝑖+1) + (1 − 𝜌)x(𝑖)

for 𝑚 = 1, . . . , 𝑀 do
ũ(𝑖+1)

𝑚 = prox𝜎ℎ*
𝑚

(︁
u(𝑖)

𝑚 + 𝜎𝐿𝑚(2x̃(𝑖+1) − x(𝑖))
)︁

u(𝑖+1)
𝑚 = 𝜌ũ(𝑖+1)

𝑚 + (1 − 𝜌)u(𝑖)
𝑚

return x(𝑖+1)

Similarly to the case of Chambolle–Pock algorithm, the function ℎ*
𝑚 represents

the Fenchel–Rockafellar conjugate of the function ℎ𝑚, and the respective proximal
operator is efficiently computed using Eq. (1.22). The algorithm convergence is
proved when the following conditions are satisfied [43]:

(i) 𝜏
(︁

𝛽
2 + 𝜎

⃦⃦⃦∑︀𝑀
𝑚=1 𝐿*

𝑚𝐿𝑚

⃦⃦⃦)︁
< 1

(ii) 𝜌 ∈ (0, 1],
(1.29)

where ‖·‖ represents operator norm and 𝛽 is the Lipschitz constant defined in (1.24).
In the special case, where 𝑓 = 0 and vector spaces used have finite dimensions, the
convergence conditions take the form of [43]:

(i) 𝜏𝜎
⃦⃦⃦∑︀𝑀

𝑚=1 𝐿*
𝑚𝐿𝑚

⃦⃦⃦
≤ 1,

(ii) 𝜌 ∈ (0, 2).
(1.30)
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1.5.6 Alternating Direction Method of Multipliers

Similarly to Chambolle–Pock algorithm, the Alternating Direction Method of Mul-
tipliers (ADMM) [48] is able to solve problems of the form

min
x

𝑓(x) + 𝑔(𝐴x), (1.31)

where x ∈ C𝑁 and 𝐴 : C𝑁 → C𝑃 is a linear operator. We assume 𝑓, 𝑔 real con-
vex functions of (possibly complex) variables. Problem (1.31) is equivalent to the
constrained problem [48]

min
x,z

𝑓(x) + 𝑔(z) s.t. 𝐴x − z = 0. (1.32)

To solve (1.32), the Augmented Lagrangian is formed as [48]

ℒ𝜌(x, z, y) = 𝑓(x) + 𝑔(z) + y⊤(𝐴x − z) + 𝜌

2‖𝐴x − z‖2
2, (1.33)

where 𝜌 > 0 is called the penalty parameter and y is the dual variable. Then the
ADMM procedure consists of three principal steps, which are summarized in Alg. 5.

Algorithm 5: Alternating Direction Method of Multipliers (ADMM)

Input: Set starting points x(0), z(0), y(0).
Set parameters 𝜌 > 0.
for 𝑖 = 0, 1, . . . do

x(𝑖+1) = arg minx ℒ𝜌

(︁
x, z(𝑖), y(𝑖)

)︁
z(𝑖+1) = arg minz ℒ𝜌

(︁
x(𝑖+1), z, y(𝑖)

)︁
y(𝑖+1) = y(𝑖) + 𝜌

(︁
𝐴x(𝑖+1) − z(𝑖+1)

)︁
return x(𝑖+1)

The ADMM can be converted to the so-called scaled form, which is often more
convenient; this is done by defining the residual r = 𝐴x − z. In such a case, the last
two terms of the Augmented Lagrangian in (1.33) can be rewritten as [48]

y⊤r + 𝜌

2‖r‖2
2 = 𝜌

2‖r + 1
𝜌

y‖2
2 − 1

2𝜌
‖y‖2

2 = 𝜌

2‖r + u‖2
2 − 𝜌

2‖u‖2
2, (1.34)

where u is a scaled dual variable such that u = y/𝜌. After the above manipulation,
the Augmented Lagrangian in the scaled form is

ℒ𝜌(x, z, u) = 𝑓(x) + 𝑔(z) + 𝜌

2‖r + u‖2
2 − 𝜌

2‖u‖2
2, (1.35)

and the ADMM scheme defined in Alg. 5 is updated using the scaled form of the
Augmented Lagrangian.
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1.6 Discrete Gabor Transform
Restoration algorithms based on sparse representations rely heavily on the repre-
sentation used. Purely frequency transform, such as Discrete Fourier Transform
(DFT), is not typically a good representative of the signal since audio signals are
not stationary and the frequency spectrum changes over time. However, it is possi-
ble to use the Discrete Gabor transform (DGT), also known as Short Time Fourier
transform (STFT), which consists in dividing a longer time signal into shorter seg-
ments multiplied by a window function and computing the DFT on each segment
separately.

Considering a one-dimensional signal x ∈ R𝐿, a window function 𝑔, and a number
of signal segments 𝑁 = 𝐿/𝑎, where 𝑎 represents the time shift, the DGT is computed
according to [49]

𝑧𝑚+1,𝑛+1 =
𝐿−1∑︁
𝑙=0

𝑥𝑙+1𝑔𝑙−𝑎𝑛+1e−2𝜋i𝑙𝑚/𝑀 . (1.36)

Here, 𝑚 = 0, . . . , 𝑀 − 1, where 𝑀 represents the number of frequency channels,
𝑛 = 0, . . . , 𝑁 − 1, and 𝑙 − 𝑎𝑛 is computed modulo 𝐿 [49]. The result of (1.36) is
a matrix of coefficients Z ∈ C𝑀×𝑁 , where each column represents DFT coefficients
of a single time segment. The coefficients may also be vectorized creating a column
vector z ∈ C𝑀𝑁×1.

In order to be able to reconstruct the signal from its coefficients, it must hold
𝑀𝑁 ≥ 𝐿. In such a case, the inverse DGT is computed as [49]

�̃�𝑙+1 =
𝑁−1∑︁
𝑛=0

𝑀−1∑︁
𝑚=0

𝑧𝑚+1,𝑛+1e2𝜋i𝑙𝑚/𝑀𝑔𝑙−𝑎𝑛+1. (1.37)

One of the DGT parameters is the window function 𝑔. Probably the most com-
monly used window function in signal processing is the Hann window,

𝑔𝑛+1 = 0.5
[︂
1 − cos

(︂2𝜋𝑛

𝑁

)︂]︂
= sin2

(︂
𝜋𝑛

𝑁

)︂
, (1.38)

where 𝑛 = 0, . . . , 𝑁 and 𝑁 represents the length of the window. Hann window is
a raised cosine window, dropping smoothly to zero at the section boundaries, which
softens the artifacts in the Fourier transform.

1.7 Psychoacoustic principles
The field of psychoacoustics has made significant progress toward characterizing
human auditory perception and particularly the time-frequency analysis capabilities
of the inner ear. Most of the current audio coders achieve compression by exploiting
the fact that “irrelevant” signal information is not detectable by even a well-trained
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listener. Irrelevant information is identified during signal analysis by incorporating
several psychoacoustic principles into the coder, such as absolute hearing thresholds,
critical band frequency analysis, simultaneous masking, the spread of masking along
the basilar membrane, and temporal masking [50].

Such principles could also be exploited in audio restoration tasks to achieve
a result more pleasing to the human listener. Incorporating the psychoacoustical
principles into the process of audio declipping will be dealt with in Chapter 7. There-
fore, this section reviews the psychoacoustic fundamentals to provide preliminary
knowledge needed further in this work.

1.7.1 Sound pressure level

First, we define the sound pressure level (SPL), a standard metric that quantifies
the intensity of an acoustical stimulus [51] as the level of sound pressure in decibels
(dB) relative to an internationally defined reference, formally

𝐿SPL = 20 log10

(︃
𝑝

𝑝0

)︃
, (1.39)

where 𝐿SPL is the SPL of a stimulus, 𝑝 is the sound pressure of the stimulus in
pascals, and 𝑝0 is the standard reference level of 20µPa, or 2 · 10−5 N/m2, which
approximately corresponds to an absolute threshold of hearing for a normal human
listener at a frequency of 1,000 Hz. [50].

1.7.2 Absolute threshold of hearing

The human audio perception ranges from 20 Hz to ca 20 kHz. It is also commonly
known that the human ear is more sensitive to frequencies around 2 – 5 kHz and the
sensitivity decreases towards the higher and lower frequencies [51].

This phenomenon was first characterized in 1933 by Fletcher and Munson as
the equal-loudness contours and the most recent definition from 2003 is listed in
the ISO226:2003 standard [52]. The equal-loudness contours indicate the frequency
dependency of the sound pressure level of a pure tone (i.e., sound with a sinusoidal
waveform) at a given frequency that is perceived by humans as loud as 1 kHz pure
tone associated with the same contour. The minimal amount of energy at which
a pure tone is detected by a listener in a noiseless environment is called the absolute
threshold of hearing (ATH) [50], in some literature denoted as threshold in quiet.
The threshold of a young listener with acute hearing can be well approximated
following the nonlinear function [53]:

𝑇𝑞(𝑓) = 3.64 𝑔−0.8 − 6.5 e−0.6(𝑔−3.3)2
+ 10−3𝑔4 (dBSPL), (1.40)
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where 𝑔 = 𝑓/1000, i.e., 𝑔 represents the frequency in kHz. This model (see Fig. 1.2
for illustration) takes into consideration the transfer function of the outer and middle
ear and the effect of the neural suppression of internal noise in the inner ear [54].
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Fig. 1.2: The absolute threshold of hearing in quiet.

The absolute threshold of hearing is dependent on the age of the listener, espe-
cially in higher frequencies, where the value at 10 kHz is shifted to a value almost
30 dB higher for a 60-year person than for a 20-year-old [54].

1.7.3 Auditory masking

Auditory masking in general is a phenomenon when the perception of one sound is
affected by the presence of another sound [55].

When both mentioned sounds are present simultaneously and a certain spec-
tral component with high energy (the masker) masks another spectral component
with lower energy (the maskee), we refer to this phenomenon as simultaneous or
frequency masking. In general, simultaneous masking can be explained by the fact
that a masker creates an excitation in the cochlea’s basilar membrane that prevents
the detection of a weaker sound exciting the basilar membrane in the same area [54].

Masking can also take place when the masker and the maskee are not presented
simultaneously but it can occur prior to and after the presence of the masker. Ac-
cordingly, these two types of temporal masking are referred to as pre-masking and
post-masking. Pre-masking (also called backward masking) can last up to 20 ms and
can be explained considering the fact that the auditory system requires a certain in-
tegration time to build the perception of a sound and by the fact that louder sounds
require longer integration intervals than softer ones [54].

Post-masking (sometimes referred to as forward masking), on the other hand,
is a stronger effect than pre-masking with a much longer duration (up to 200 ms)
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depending on the masker level, duration, and relative frequency of masker and probe.
It is usually explained by the regeneration time of the excited sensory cells [54].

In general, temporal masking is the dominant effect for sounds that present
transients, while frequency masking is dominant in steady-state conditions.

Combining the auditory masking phenomenon with the ATH gives the global
masking threshold (GMT), which is a curve that indicates the minimum sound pres-
sure level that a spectral component has to possess in order not to be masked by
other spectral components. In other words, the spectral components below the GMT
will be evaluated as imperceptible. This is commonly used in audio coding (usually
in a block called psychoacoustic model—see Sec. 1.7.4), where the GMT is used to
identify the audible spectral components that will be encoded. Other spectral com-
ponents located below the GMT can be omitted from the coding process because
they are not perceived by the human listener. Moreover, the quantization noise
caused by the quantization of individual spectral components is usually distributed
such that it is located below the GMT and thus it is not perceived.

1.7.4 Psychoacoustic model

The first audio coding standards for generic audio signals were MPEG-1, MPEG-2,
and MPEG-2 Advanced Audio Coding (AAC). These standards normatively specify
the bitstream format and decoder operation, leaving room for encoder optimization
even after the publication of the standard. Consequently, these standards only
provide suggestions for perceptual models and may be implemented and modified as
deemed appropriate by the implementer [56]. The MPEG-1 Audio standard specifies
two psychoacoustic models:

• Psychoacoustic model 1, intended mainly for the use with the Layer I and II
that employ a 32-band pseudo-Quadrature Mirror Filter (pQMF) filterbank.

• Psychoacoustic model 2, intended mainly for the use with the Layer III (also
known as “MP3”), and appears in a similar form as the MPEG-2 AAC psy-
choacoustic model.

Although both models differ in some details, the general approach used in both
cases is the same. This section will describe the Psychoacoustic model 1, because it
will be incorporated into the declipping task (see Chapter 7).

The first step is to obtain a spectral profile (sometimes called the estimate of the
power spectral density—PSD) of the signal. This is done by a windowed Discrete
Fourier Transform (DFT). Hann window with a length of 512 samples is used for
Layer I, while Layer II uses a 1024 samples long window. Then, the signal energy
is computed in frequency bands that are designed to resemble the Bark perceptual
frequency scale by an appropriate grouping of the DFT coefficients. Because tonal
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and nontonal components have different effects on the masking level, the next step is
to distinguish between tonal and nontonal masker components by examining whether
a spectral contribution belongs to a spectral peak. The threshold in quiet is then
computed to evaluate the minimum level for maskers in each band to be considered
as relevant and maskers below the threshold are removed. Furthermore, of those
maskers that are very close to each other in frequency, the lower-amplitude masker
is removed. The effects of the remaining maskers are obtained using a spreading
function that models the effect of frequency masking. Finally, the individually
computed masking thresholds are combined with the threshold in quiet into a single
global masking threshold, which is usually further used in the coding process [56, 57].

An example of the MPEG-1 Psychoacoustic Model 1 is displayed in Fig. 1.3.
The DFT spectrum is painted with gray color and the absolute threshold of hearing
with blue color. Individual detected maskers are displayed with little circles and
the respective dotted lines represent individual spreading functions for each masker.
The red color is used for tonal maskers, while the green color represents nontonal
spectral components. The resulting GMT is then displayed using a black dashed
line.
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Fig. 1.3: Example of Global Masking Threshold computed using MPEG-1 Psychoa-
coustic Model 1. The figure was generated using the MATLAB implementation of
MPEG-1 Psychoacoustic model 1 [58].

32



2 Clipping and quantization
This chapter is devoted to the nonlinear damage of the audio signal this Thesis works
with, i.e., clipping and quantization. Clipping is discussed in Sec. 2.1, where the
basic questions about clipping (what clipping is, where it may arise, why it causes
problems, etc.) are explained. Depending on the shape of the transfer function,
clipping can be divided into hard and soft clipping. Both types are in this chapter
described, formally defined, and illustrated on both example and real signals. Inten-
tional usage of clipping to achieve the desired sound effect is mentioned in Sec. 2.2.
The following section, i.e., Sec. 2.3, then discusses the general formulation of the
declipping problem.

Next follows the section on quantization (Sec. 2.4), where different types of quan-
tization are outlined and the quantization models used in this work are described
and illustrated on examples. Similarly to declipping, Sec. 2.5 specifies the basic idea
of the dequantization problem.

Finally, the last section of this chapter (Sec. 2.6) puts into relation the declipping
and dequantization problems and shows that both tasks are similar and can be solved
using the same methodology.

2.1 Clipping
Clipping can be described as a nonlinear form of signal distortion affecting peaks
of the signal. It usually occurs when a signal exceeds its allowed dynamic range
and the signal peaks get clipped to the boundaries of the dynamic range. Thus,
information located in the peaks is lost. From the frequency-domain perspective,
such a nonsmooth phenomenon naturally produces artificial higher harmonics. The
newly-introduced higher harmonics shift the signal energy towards higher frequen-
cies, which may cause trouble in some applications (see Fig. 2.1 for an example).

Clipping affects both analog and digital signals and may arise anywhere, where
a signal is recorded by a sensor with a limited range or is being digitized or trans-
formed, especially in the presence of a gain. A typical example of clipping is in
photographs, where clipping is caused by the limited dynamic range of the electronic
image sensor (CMOS or CCD). Such clipped areas are referred to as overexposed
and appear as completely white (also called blown highlights or white clipping) [59].

Even though clipping may affect any type of signal, the most common occur-
rence of this artifact is with audio signals where causes undesirable and perceptually
unpleasant artifacts. Clipping may occur during the recording stage when the input
gain on the recording equipment is set a bit too high. Also recording loud sounds
using microphones with low dynamic range (typically integrated in a notebook or
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Fig. 2.1: Demonstration of the hard clipping and soft clipping on a sine wave. The
frequency of the sine wave is 5 Hz and the sampling frequency is 500 Hz. The clipping
threshold for both hard clipping and soft clipping was set to 𝜃c = 0.5. The magnitude
spectra were generated from 20 seconds of audio, and the Blackman window was
used to attenuate the side lobes of the spectra.
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Fig. 2.2: Demonstration of clipping on the spectrogram of a violin signal with
44.1 kHz sampling frequency. The clipping threshold for both hard clipping and
soft clipping was set to 𝜃c = 0.1.
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Fig. 2.3: Demonstration of clipping on the spectrogram of a glockenspiel signal with
44.1 kHz sampling frequency. The clipping threshold for both hard clipping and soft
clipping was set to 𝜃c = 0.1.
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mobile phone) may result in clipping. In the analog domain, clipping is very often
caused in amplifiers by the limited range of output transformers.

Clipping is an undesirable effect that may cause several problems. Not only has
clipping a significant negative effect on the perceptual quality of the signal [60]. Sev-
eral studies show that it also degrades the accuracy of automatic speech recognition
[61, 62, 63], causes problems in LPC prediction, resulting in an inaccurate estimation
of LPC [64], or degrades the accuracy of voice-based Parkinson’s disease detection
[65]. During reproduction, severe clipping can even damage the loudspeaker [66].
Non-audio signals are affected by clipping as well and, for example, in OFDM sig-
nals may cause inaccuracies during the transmission [67] or cause problems when
transmitting ultrasonic signals [68].

According to the character of clipping, two different types of clipping can be
distinguished—hard clipping (also called digital clipping) and soft clipping. The
effect of both types of clipping is demonstrated on a sine wave both in the time-
domain (see Fig. 2.1a) and in the magnitude spectrum (see Fig. 2.1b). In addition,
a demonstration on a spectrogram of a real signal is shown in Figs. 2.2 and 2.3.

2.1.1 Hard clipping

In the case of hard clipping, samples of the signal x ∈ R𝑁 are limited to fit the
dynamic range given by clipping thresholds [−𝜃c, 𝜃c]. The clipped signal y ∈ R𝑁 can
be formally prescribed as

𝑦𝑛 =
⎧⎨⎩𝑥𝑛 for |𝑥𝑛| < 𝜃c,

𝜃c · sgn(𝑥𝑛) for |𝑥𝑛| ≥ 𝜃c,
(2.1)

where the subscript 𝑛 refers to the 𝑛-th sample of the signal, and sgn represents the
signum function defined as

sgn(𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for 𝑧 > 0,

0 for 𝑧 = 0,

−1 for 𝑧 < 0.

(2.2)

The clipping model (2.1) is referred to as symmetrical since both the positive and
negative parts of the waveform are clipped equally.

The counterpart of symmetrical clipping is asymmetrical clipping, where the
positive and negative amplitude peaks of the waveform are clipped unevenly (asym-
metrically). Nevertheless, asymmetrical clipping is less common and is used more
often on purpose as an effect (see Sec. 2.2). Also, altering the declipping algorithms
to repair the asymmetrically clipped signal is a trivial task, thus this dissertation
considers only symmetrical clipping.

The transfer function of the hard clipping with symmetrical clipping threshold
𝜃c = 0.5 is depicted in Fig. 2.4.
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Fig. 2.4: Transfer function of symmetrical hard clipping.

2.1.2 Soft clipping

Soft clipping, on the contrary to hard clipping, does not strictly limit the values of
the signal, but rather gradually compresses the peaks. Therefore, usually more sam-
ples are influenced compared to hard clipping, but due to the gradual compression
and the absence of discontinuity in the first derivative of the transfer function, the
harmful effects of clipping are not as significant as with hard clipping.

The transfer function of soft clipping can not be uniquely defined as in the case
of hard clipping. It always depends on a specific application, electronic circuit, or
manufacturer. In general, soft clipping can be modeled by any sigmoid curve (e.g.,
arctan(𝑥), tanh(𝑥), 𝑥

1+|𝑥| ,
𝑥√

1+𝑥2 ).
An example of a soft clipping function with adjustable level of hardness can be

prescribed as follows [69]:

𝑦𝑛 =

⎧⎪⎪⎨⎪⎪⎩
𝑥𝑛 for |𝑥𝑛| ≤ 𝑟,

sgn(𝑥𝑛) ·
[︃
(𝜃c − 𝑟) tanh

(︃
|𝑥𝑛| − 𝑟

𝜃c − 𝑟

)︃
+ 𝑟

]︃
for |𝑥𝑛| > 𝑟,

(2.3)

where 𝜃c is a clipping threshold and 𝑟 is a threshold from which the signal starts
to compress, i.e., in the range [−𝑟, 𝑟] is the characteristic curve linear. Instead of
the linear range, it is possible to introduce the “hardness” of the transfer function
𝑘 ∈ [0, 1], and then 𝑟 = 𝑘 · 𝜃c. If 𝑘 = 0, the transfer function is as soft as possible
and the signal is compressed in its full range of amplitude. On the other hand, for
𝑘 = 1 it holds 𝑟 = 𝜃c and the transfer function has the shape of hard clipping. The
characteristic curve of soft clipping for different settings of hardness 𝑘 is displayed
in Fig. 2.5.

Soft clipping as an undesired damage of the signal is less common than hard
clipping. More often, it is used on purpose to enrich the spectrum of the acoustic
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Fig. 2.5: Transfer function of symmetrical soft clipping with adjustable hardness.

signal with higher harmonics, for example, to achieve the specific sound of a distorted
electric guitar (see Sec. 2.2).

Some amplifiers also use soft clipping to prevent the occurrence of hard clipping.
When the output voltage approaches the threshold value, it starts to compress the
output voltage, which results in a decline in the dynamics of the output signal and
a mild distortion instead of a significant distortion caused by hard clipping.

Considering the restoration of the clipped signal, the thesis will focus only on
the case of hard clipping, since this type is more common and more harmful and
undesired than soft clipping.

2.2 Clipping as an effect
As mentioned earlier, clipping is not only an unintended damage of the signal, but
it can be applied to achieve a desired effect. In general, clipping can be used in
dynamics processing, valve simulation, overdrive and distortion effects, or psychoa-
coustic enhancers and exciters. All the above-mentioned applications fall into the
category of nonlinear processing.

The nonlinear processing category can be divided into three different classes. The
first class encompasses dynamic range controllers that are used in amplifying devices,
where the gain is controlled by the level of the input signal. To this category belong
devices, such as compressor, expander, limiter, noise gate, or de-esser. Devices from
this class serve only for controlling the gain of the signal and the amount of harmonic
distortion should be kept as low as possible [70].

The second class contains effects that create additional harmonics for a sub-
tle improvement of the signal characteristics. Typical representatives are exciters
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and enhancers. Exciters emphasize or de-emphasize certain frequencies in order to
change a timbre of the signal. They are usually used to increase brightness without
necessarily adding equalization, resulting in a brighter and “airier” sound without
the stridency of simply boosting the treble. Enhancers combine nonlinear processing
with equalization according to the fundamentals of psychoacoustics and introduce
only a small amount of distortion to make the resulting sound more pleasing [70].

The effects from the third class intentionally generate a strong harmonic distor-
tion to enrich the signal’s spectrum. They are very often used in the signal chain
of the electric guitar to obtain the characteristic distorted rock sound. The first
overdrive was used in guitar amplifiers, where the main particle was a vacuum tube.
Driving the amplifier’s volume caused saturation that softly clipped the output sig-
nal. Some guitarists then tried to achieve a more distorted sound by manipulating
the tubes, poking and cutting holes into the speakers, and intentionally damaging
their amplifiers [71].

Later on, the amplifiers were built with two stages—pre-amplifier (also called
preamp) and power amplifier. The preamp is used to amplify the signal to create
a desired distortion and the power amplifier only amplifies the signal to the result
loudness level. Also, stompboxes are produced to simulate the tube overdrive and
create additional harmonics before the amplifier itself. The effects are referred to as
overdrive, distortion, or fuzz. The overdrive effect tries to simulate the overdriven
tube amp by soft-clipping the signal peaks but the rest of the characteristic curve
is mostly linear [70]. Distortion, on the other hand, is characterized by a nonlinear
characteristic in a wider range, creating more harmonics than overdrive. The oper-
ating status of fuzz is represented by a completely nonlinear behavior with the sound
characterized as “hard”, “harsher” than distortion. The typical transfer functions
of a triode vacuum tube, overdrive, and distortion effects are shown in Fig. 2.6

38



The most famous overdrive, distortion, and fuzz pedals are shown in Fig. 2.7. The
Ibanez TS9 (Fig. 2.7a) uses symmetrical soft clipping, while Boss SD-1 (Fig. 2.7b)
uses asymmetrical soft clipping. As a typical representative of distortion pedals,
Boss DS-1 is shown in Fig. 2.7c, and finally, the Big Muff by electro-harmonix
(2.7d) as one of the most famous fuzz using two stages of clipping (soft and hard)
is mentioned.

(a) Ibanez TS91 (b) Boss SD-12 (c) Boss DS-13 (d) Big Muff4

Fig. 2.7: Famous overdrive, distortion and fuzz pedals.

2.3 Declipping
By the term declipping, it is meant the inverse task of estimating the original signal x
from the clipped observation y. The goal of declipping is to provide signals that are
most similar to the unknown original reference or at least to remove the disturbing
phenomena caused by clipping.

In line with (2.1), the indexes of signal samples can be divided into three disjoint
sets 𝑅, 𝐻 and 𝐿, such that 𝑅∪𝐻∪𝐿 = {1, . . . , 𝑁}, which correspond to the positions
of reliable (not influenced by clipping) samples, and samples that have been clipped
to the high clipping threshold 𝜃c and low clipping threshold −𝜃c, respectively. To
select only samples from the specific set, the respective restriction operators 𝑀R, 𝑀H

and 𝑀L (also called masks) are used. These operators can also be viewed as matrices,
which are formed from the identity matrix 𝑁 × 𝑁 by removing the respective rows
that do not belong to the selection.

1Retrieved from https://www.ibanez.com/eu/products/detail/ts9_99.html
2Retrieved from https://www.boss.info/cz/products/sd-1/
3Retrieved from https://www.boss.info/cz/products/ds-1/
4Retrieved from https://www.ehx.com/products/big-muff-pi/
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Fig. 2.8: Demonstration of the set of feasible solutions Γ on a 4 ms excerpt of
a real audio signal. The original signal is depicted in gray color and the clipped
observation in black color. The set Γ is visualized using color areas, where green
areas correspond to the reliable samples, orange and yellow areas correspond to the
samples clipped from above and below, respectively.

In the declipping restoration task, it is natural to desire that the recovered signal
x̂ should match the clipped signal y at the reliable positions, and at the clipped
positions, its samples should lie above 𝜃c or below −𝜃c. Such conditions can be
formalized by defining a (convex) set of time-domain signals Γ as follows:

Γ = {x̃ ∈ R𝑁 | 𝑀Rx̃ = 𝑀Ry, 𝑀Hx̃ ≥ 𝜃c, 𝑀Lx̃ ≤ −𝜃c}, (2.4)

where the inequalities are considered elementwise. Such an approach, where the
reconstructed signal x̂ is forced to lie in the set of feasible solutions Γ, i.e., x̂ ∈ Γ,
is called consistent or fully consistent. This approach is necessary to obtain the
restored signal x̂ that is as close to the unknown original signal x as possible. On
the other hand, it is possible to sometimes break the consistency of the solution
and allow some deviation on reliable samples in order to obtain a more perceptually
pleasing signal, rather than the physically most similar one, or in the case where the
damaged signal is not only clipped but also noisy. Such solutions are referred to as
𝑅-inconsistent. Demonstration of the set of feasible solutions Γ on a short excerpt
of a real audio signal is shown in Fig. 2.8.

For some applications, it would be beneficial to also define particular subsets
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ΓR, ΓH, and ΓL, such that

ΓR = {x̃ | 𝑀Rx̃ = 𝑀Ry}, (2.5a)
ΓH = {x̃ | 𝑀Hx̃ ≥ 𝜃c}, (2.5b)
ΓL = {x̃ | 𝑀Lx̃ ≤ −𝜃c}, (2.5c)

and therefore
Γ = ΓR ∩ ΓH ∩ ΓL. (2.6)

Since the above-defined masks and therefore the sets depend on the observation
y, the feasible sets should be formally written as Γ(y), for example. Nevertheless,
this dependence on the signal is omitted at most places for brevity.

The original dynamic range of the signal before clipping is typically unknown.
However, if it is known or can at least be estimated (in practice, samples of audio
signals usually fall into the range [−1, 1]), additional constraints like 𝑀Hx̃ ≤ 𝜃max

and 𝑀Lx̃ ≥ −𝜃max can be appended to (2.5) to further restrict the feasible set Γ.
The scalars 𝜃min and 𝜃max represent the lower and upper bounds for the value of the
signal, e.g., 𝜃min = −1 and 𝜃max = 1. For example, [72] reports an improvement in
signal recovery after such a trick for heavily clipped signals.

The declipping task itself is ill-posed since there is an infinite number of solu-
tions that satisfy the declipping conditions defined in (2.4). Therefore, considering
some additional information about the signal is crucial and the inverse problem is
regularized based on a signal or statistical model. Different approaches to audio
declipping are discussed in Chapter 3.

2.4 Quantization
Since computers store numbers using a finite number of bits, analog signals must be
converted to a digital format. This process is called digitization and usually consists
of three main steps—sampling, quantization, and encoding.

Sampling is a process of transforming the continuous-time signal to discrete-
time signal. Most often used in practice is uniform sampling, which is obtained by
sampling the analog signal 𝑥a every 𝑇 seconds. The number of samples per second is
given by sampling rate, usually denoted as 𝑓s. To be able to perfectly reconstruct the
signal from the samples, the Nyquist theorem must be fulfilled, which determines the
minimum value of the sampling frequency with respect to the maximum frequency
of the signal 𝑓max, such that

𝑓s ≥ 2𝑓max. (2.7)

Therefore, an anti-aliasing low-pass filter is usually applied to the signal before
sampling to prevent aliasing [73].
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Fig. 2.9: Illustration of uniform mid-riser quantization with 4 bit word length.

Quantization is the mapping of continuous amplitude values to the nearest quan-
tization levels that can be represented by a finite number of bits [54]. This step is
inevitably lossy and a quantization error e is introduced, defined as the difference
between the original and quantized signal. Formally, the general concept of quanti-
zation can be prescribed as

(𝑦q)𝑛 = 𝑥𝑛 − 𝑒𝑛, (2.8)

where yq denotes the quantized signal, x is the original signal and e represents the
quantization error. An example of quantization on a sine signal is shown in Fig. 2.9.

Finally, encoding is the final step assigning binary code words to the quantized
samples.

There are several types of quantization based on the quantization properties.
Two main classes of quantization are scalar (sometimes called instantaneous) quan-
tization and vector quantization. In scalar quantization, each sample of the signal is
quantized individually and the mapping is not largely influenced by previous sam-
ples. On the other hand, vector quantization utilizes temporal relations of consecu-
tive amplitude values and instead of single values, it quantizes groups of amplitude
samples into a single code word. In audio coding schemes, vector quantization is
highly efficient for very low data rates (much less than one bit per audio sample),
nonetheless, it makes perceptual control of distortion difficult. Therefore, it is used
usually for intermediate quality with emphasis on very low data rates [54].

Depending upon whether the encoding rules rely on the past samples, scalar
quantization can be memoryless or with memory. An example of memoryless quan-
tization is Pulse Code Modulation (PCM), which will be discussed in more detail
later. On the other hand, systems with memory are Differential PCM (DPCM),
delta modulation (DM), and adaptive DPCM (ADPCM), for instance.
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Fig. 2.10: An example of mid-riser and mid-tread quantization for 𝑤 = 3 bits.

Quantization can also be parametric or nonparametric. In nonparametric quan-
tization, the actual waveform of the signal is quantized. Parametric quantization, on
the contrary, is based on signal transformation or on source-system signal models.

Based on the step size of the quantization levels, i.e., the quantization step
Δ, we can distinguish between the uniform quantization, which has constant Δ,
and nonuniform quantization, which can vary the quantization step based on the
distribution of the samples to minimize the quantization error.

Signal amplitudes can have both positive and negative values, so the quantiz-
ers have to be defined for both cases. In the majority of cases, the quantization
schemes are symmetric, having an equal number of quantization levels for positive
and negative values. According to the way how the zero is treated, it is possible
to recognize quantizers that are midrise (i.e., do not have a zero output level) and
midtread (i.e., do pass a zero output). The difference between the mid-riser and
mid-tread quantization is illustrated in Fig. 2.10. With 𝑤 denoting the word length
(number of bits to represent the signal sample), mid-tread quantization allows 2𝑤 −1
different codes for quantization levels and mid-rise 2𝑤 codes [54].

Uniform quantizers are optimal in the mean square error (MSE) sense for sig-
nals with uniform distribution of samples. Nonetheless, real signals usually do not
have a uniform probability density function (PDF). Therefore, nonuniform quantiz-
ers use fine step sizes for frequently occurring values and coarse step sizes for less
frequent values to minimize the quantization error [50]. One approach is to form an
optimization problem as finding the quantization intervals that minimize the MSE.
The Lloyd–Max algorithm [74] can be utilized for this task, nevertheless, it usually
involves a large number of iterations, hence may be computationally expensive [75].

Another approach called companding is realized by using a nonlinear mapping
function 𝑔(·) to modify the dynamic range of the quantized signal such that a stan-
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Fig. 2.11: Comparison of A-law and 𝜇-law compression characteristics.

dard uniform quantizer can be used. Usually, the mapping function 𝑔(·) acts as
a compressor. To recover the signal, the decoder uses an inverse function 𝑔−1(·),
which has a characteristic of an expander. Typical standards used in telecommuni-
cations are 𝐴-law (Europe) and 𝜇-law (North America and Japan). Characteristic
curves of A-law and 𝜇-law compression are shown in Fig. 2.11.

The quality of the quantized signal is usually measured by the signal-to-noise
ratio (SNR), sometimes also denoted as signal-to-quantization noise ratio (SQNR).
For sinusoidal signals, the SQNR in decibels (dB) can be expressed as

SQNR = 1.76 + 6.02𝑤 (dB). (2.9)

This implies that the SQNR increases by approximately 6 dB with every bit added
to the word length. Although equation (2.9) was derived for sinusoidal signals,
a similar result holds for every signal whose dynamic range spans the range of the
quantizer [76].

2.4.1 Dithering

When large-amplitude signals are quantized with sufficient bit depth, there is little
correlation between the signal and the quantization error. Thus, the quantization
error has a random character and is perceptually similar to white noise. However,
in the case of low-level signals, the characteristic of the quantization error changes
as it becomes correlated to the signal and may result in audible distortion. The
number of bits might be increased to reduce the audibility of the quantization error,
nevertheless, it is uneconomical and the error will always be relatively significant on
low-level signals [77].

To deal with this problem, a technique called dithering is commonly used, which
consists in adding a small amount of low-level noise to the signal before quantization
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Fig. 2.12: Demonstration of dithering effect on a sine wave. The frequency of the
sine wave is 5 Hz and the sampling frequency is 500 Hz. The amplitude of the sine
wave is set to 0.8 to suppress the effect of clipping during the waveform quantization
and the added dither has a triangular PDF ranging from −0.75Δ to 0.75Δ. For
this example, a mid-riser quantization with the bit-depth of 3 bps was used. The
magnitude spectra were generated from 20 seconds of audio, and the Blackman
window was used to attenuate the side lobes of the spectra.

(or decreasing the bit depth). The added noise decorrelates the quantization error
from the signal and the effects of the quantization error are randomized to the point
of elimination. Although dithering greatly reduces distortion, it adds some noise
to the output audio signal. Dither does not mask the quantization error; it rather
allows the digital system to encode amplitudes smaller than the least significant bit
using a principle similar to pulse-width modulation (PWM) and thus retain the low-
level details [77]. The effect of dithering is demonstrated on a sine wave in Fig. 2.12.

There are several types of dither, generally differentiated by the probability den-
sity function. For audio applications, three dither signals are commonly used: Gaus-
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sian, rectangular (or uniform), and triangular PDF [78]. The triangular PDF is used
the most because it also minimizes the noise modulation, which are audible changes
in the volume of the residual noise [79].

The audible noise caused by dithering can be further reduced using a technique
called noise-shaping. It is a process of filtering the dither noise to shape the spectral
energy of the quantization error to de-emphasize the frequencies to which the human
ear is most sensitive [79].

Dithering should be used whenever the bit depth of an audio signal is being
reduced. This typically arises when creating 16-bit files for an audio CD from a 24-
bit or 32-bit mix. Without applying dithering, the resulting recordings often sound
“harsh” and slightly distorted.

2.4.2 Quantization model

Even though there is a plethora of quantization schemes and models (the previous
section gave a brief overview of several possibilities), this Thesis will mainly focus
on uniform mid-riser and mid-tread quantizers. One of the main reasons is that
the goal of this work is not to obtain the best possible audio quality using sophis-
ticated quantization schemes but to restore the already-quantized signal. For this
task, standard uniform quantization is sufficient. Nonetheless, the later-presented
dequantization methods can be generalized to all kinds of waveform quantization.

As in the clipping case, the straightforward mid-riser and mid-thread quantiza-
tions are demonstrated on a sine wave both in the time domain (see Fig. 2.13a) and
in the magnitude spectrum (see Fig. 2.13b). Also, the spectrograms of real signals
are shown in Figs. 2.14 and 2.15.

Mid-riser quantization—using the mid-riser uniform quantization, the quan-
tized signal yq ∈ R𝑁 is obtained according to the following formula:

(𝑦𝑞)𝑛 = sgn+(𝑥𝑛) · Δ ·
(︃⌊︃

|𝑥𝑛|
Δ

⌋︃
+ 1

2

)︃
, (2.10)

where 𝑛 denotes the 𝑛-th sample of the signal, Δ is the quantization step given by

Δ = 2 · 1
2𝑤

, (2.11)

and sgn+ denotes the altered signum function, returning 1 also for the zero input,
formally defined as

sgn+(𝑧) =
⎧⎨⎩ 1 for 𝑧 ≥ 0,

−1 for 𝑧 < 0.
(2.12)

The number of quantization levels is equal to 2𝑤, and a full range of available
quantization codes is utilized.
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Fig. 2.13: Demonstration of the mid-riser and mid-tread quantization on a sine wave.
The frequency of the sine wave is 5 Hz and the sampling frequency is 500 Hz. The
word length for both mid-riser and mid-tread quantization was set to 𝑤 = 2 bits.
The magnitude spectra were generated from 20 seconds of audio, and the Blackman
window was used to attenuate the side lobes of the spectra.
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Fig. 2.14: Demonstration of uniform quantization on the spectrogram of a violin
signal with 44.1 kHz sampling frequency. The word length for both mid-riser and
mid-tread quantization was set to 𝑤 = 4 bits.
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Fig. 2.15: Demonstration of uniform quantization on the spectrogram of a glocken-
spiel signal with 44.1 kHz sampling frequency. The word length for both mid-riser
and mid-tread quantization was set to 𝑤 = 4 bits.
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Mid-tread quantization—using the mid-tread uniform quantization, the for-
mula

(𝑦𝑞)𝑛 = Δ ·
(︃⌊︃

|𝑥𝑛|
Δ + 1

2

⌋︃)︃
, (2.13)

is used to prescribe the quantized signal yq ∈ R𝑁 , with the quantization step

Δ = 2 · 1
2𝑤 − 1 . (2.14)

The number of quantization levels is always odd (2𝑤 − 1) and thus one quan-
tization code stays unused. Despite a smaller number of quantization levels, mid-
tread quantization usually yields better results given the distribution of audio signal
samples [54]. On the other hand, in the case of low bitrate can lead to sections of
consecutive zero samples. This effect can be observed on spectrograms in Figs. 2.14c
and 2.15c.

2.5 Dequantization
Dequantization, similarly to declipping is the inverse task of estimating the original
signal x from its quantized observation yq.

There is a number of reasons why dequantization is an important task and has
its application, even though it may be not as evident as in the case of clipping.
Standard CD audio quality is 2-channel signed 16-bit LPCM sampled at 44.1 kHz.
This bit-depth provides more than 96 dB SQNR, which is more than enough that
the effect of quantization is imperceptible. Nonetheless, in some cases, where the
original audio was recorded with low dynamic range or needs to be further edited,
the standard 16 bps bit depth could be insufficient.

Another application of dequantization may arise in special cases, where less than
the standard bit depth has to be used. This can typically occur in communication
systems due to bandwidth limitations [80, 81].

Recently, the need to enhance the bit-depth of audio signals appeared in artificial
audio generation using a Flow-based Neural Vocoder [82].

In the declipping task, the audio samples were divided into three disjoint sets.
In dequantization, this division is not possible because all samples of the signal were
affected by quantization. However, from the definition of the uniform quantization,
we can assume that the unknown original sample 𝑥𝑛 lied no further than half of the
quantization step from its current quantization level 𝑦q

𝑛.
Thus, in dequantization, the unknown vector x̃ ∈ R𝑁 is searched for, such that

it fulfills the following requirement:

∀𝑛 : 𝑦q
𝑛 − Δ

2 ≤ �̃�𝑛 ≤ 𝑦q
𝑛 + Δ

2 . (2.15)
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This condition can also be written using the difference of the estimated sample and
the current quantization level

∀𝑛 : |�̃�𝑛 − 𝑦q
𝑛| ≤ Δ

2 , (2.16)

and rewritten using the ℓ∞-norm as

‖x̃ − yq‖∞ ≤ Δ
2 . (2.17)

Finally, the dequantization conditions can be formalized by defining the convex
set Γ as follows:

Γ =
{︃

x̃ | ‖x̃ − yq‖∞ ≤ Δ
2

}︃
, (2.18)

and then require the dequantized signal to lie in this set, formally x̃ ∈ Γ. As in the
declipping case, strictly forcing x̃ to lie in Γ is called the consistent approach but it
is also possible to extend the allowed interval for each quantization level and thus
allow some deviation from the Γ.

Demonstration of the allowed intervals formalized by the set of feasible solutions
Γ is illustrated in Fig. 2.16.
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Fig. 2.16: Demonstration of the set of feasible solutions Γ for dequantization on
a short excerpt of a real signal. The respective upper and lower bounds for each
quantization level are marked with gray and white stripes. The set of feasible
solutions Γ is displayed using light blue areas.
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2.6 Relation of declipping and dequantization
Although this may not be clear at first glance, declipping and dequantization are
in fact very similar inverse tasks. This section will briefly demonstrate that the
sets of feasible solutions for declipping and dequantization can be generalized using
a common notation and thus may be solved using the same type of algorithms.

Let us rewrite the definitions of feasible solution sets for declipping and dequan-
tization once again:

Γclip = {x̃ | 𝑀Rx̃ = 𝑀Ry, 𝑀Hx̃ ≥ 𝜃c, 𝑀Lx̃ ≤ −𝜃c} , (2.19a)
Γquant = {x̃ | ‖x̃ − yq‖∞ ≤ Δ/2} . (2.19b)

Both these sets are convex multidimensional intervals, also called box-type sets.
Therefore, both sets can be rewritten using the general formulation of a box-type
set, such as

Γ = {x̃ | bL ≤ x̃ ≤ bH}, (2.20)

where bL, bH ∈ R𝑁 are the respective lower and upper bounds of the allowed inter-
val. Specifically, vectors bL and bH for declipping are defined in Eq. (2.21) and for
dequantization are prescribed in Eq. (2.22).

(bL)𝑛 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(y)𝑛 for 𝑛 ∈ 𝑅,

𝜃c for 𝑛 ∈ 𝐻,

−∞ for 𝑛 ∈ 𝐿,

(bH)𝑛 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(y)𝑛 for 𝑛 ∈ 𝑅,

∞ for 𝑛 ∈ 𝐻,

−𝜃c for 𝑛 ∈ 𝐿.

(2.21)

(bL)𝑛 = (yq)𝑛 − Δ
2 (bH)𝑛 = (yq)𝑛 + Δ

2 . (2.22)

Since for both declipping and dequantization problems can be the feasible set Γ
prescribed using the general formulation (2.20), both tasks are very similar and can
be solved using the same methodology.

50



3 State of the art
Clipping is undoubtedly one of the most common and (not only perceptually) harm-
ful signal degradations (see Sec. 2.1 for examples). This fact motivated many re-
searches in the past, resulting in a great number of methods to restore the clipped
signal available today.

This chapter provides an overview of published audio declipping methods known
to the author, beginning with early, rather simple methods, up to modern and
current state-of-the-art methods. Note that only methods developed for audio or
speech signals are reviewed in this chapter, even though several declipping methods
were also implemented for specific signals, e.g., ultrasonic signals [68], OFDM signals
[67], images [83], etc., which are usually based on specific assumptions about the
signal.

The chapter starts with Sec. 3.1, where various approaches to audio declipping
besides sparsity are presented. At the end of the section, the presented methods are
briefly summarized and categorized in Table 3.1.

Special focus is paid to the methods based on signal sparsity, which largely form
the current state of the art, and are described in Sec. 3.2. The overviewed sparsity-
based audio declipping methods are for clarity summarized in Table 3.2. The order
of the methods in both above-mentioned sections is organized roughly according to
the date of publishing.

For a more detailed overview, where popular unsupervised audio declipping
methods are overviewed and compared on a common audio dataset, we refer the
reader to the recent survey by Záviška et al. [10].

A special section is devoted to methods based on machine learning principles,
i.e., mostly supervised principles. Even though there are no methods for general
audio declipping, some methods focusing on speech declipping have been proposed
and are described in Sec. 3.3 and summarized in Table 3.3 at the end of the section.

Even though the vast majority of declipping methods are aimed at restoring the
signal damaged by hard clipping, several methods restoring also the soft-clipped
signals were published. For the sake of completeness, these methods are presented
in Sec. 3.4 and summarized in Table 3.4.

Finally, the last section, i.e., Sec. 3.5 covers the state of the art in audio waveform
dequantization, followed by a summary in Table 3.5.

3.1 Various approaches to audio declipping
The very first attempt to restore the clipped signal dates back to 1986 and was
based on autoregressive (AR) modeling [84]. It assumed that a particular signal
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sample can be induced via a fixed linear combination of the preceding samples. In
practice, the AR model can be successfully applied to signals containing harmonic
components. This method treats the clipped samples as missing, i.e., does not
obey the consistency restriction defined in (2.4). Nevertheless, this method is still
considered as one of the state-of-the-art methods for audio inpainting [6].

The first method considering a clipped signal fulfilling the consistency conditions
was introduced in [85]. The authors assumed the signal as band-limited (at a higher
frequency than the Nyquist frequency) and formed a convex problem to find a unique
solution. The recovery uses oversampling and interpolation with the sinc function.

In 2001, Fong and Godsill [86] approached the declipping problem from the
viewpoint of Bayesian statistical signal processing. The authors employed the time-
varying autoregressive (TVAR) coefficients and utilized the Monte Carlo particle
filter and smoother to find the declipped samples. This method was also reviewed
in [87], which provides a general overview of model-based approaches to audio pro-
cessing with an application areas including denoising, declicking, and correction of
nonlinear distortions such as clipping and poor quantization.

Dahimene et al. in [88] dealt with peak clipping of speech signals in a speech
recognition system. The introduced method stands on the autoregressive assumption
imposed on the signal and consists of two principal steps. First, the prediction
coefficients are computed using either least squares or the Kalman filter. The clipped
samples are then treated as missing and are predicted using the forward interpolation
from the AR coefficients.

The audio declipping work by Takahashi et al. [89, 90, 91] is based on an inter-
esting observation that when the Hankel matrix is formed from a signal that follows
the autoregressive (AR) model, the rank of this matrix is identical to the order of the
respective AR process. Therefore, the approach aims at estimating the unknown but
clipped elements of the Hankel matrix, whose rank is being minimized at the same
time. The paper [89] provided a null-space-based alternating optimization (NSAO)
algorithm, which was modified to guarantee that the solution matrix has the Han-
kel structure and satisfies the declipping constraints. The proposed algorithm was
further improved in [90], where the block adaptive approach was utilized to improve
the quality of declipping and reduce the computational time. The last contribution
of the authors [91] tried to improve the poor performance of the AR-based methods
in cases when the properties of audio signals change in the processed time frame,
which contradicts a single AR model assumption. The authors presented a multiple
AR approach, where signals are assumed to be modeled by switched models con-
sisting of multiple AR models. Based on the proposed model, audio declipping was
formulated as a multiple matrix rank minimization problem, and a new algorithm
was proposed by modifying the iterative partial matrix shrinkage (IPMS) algorithm.
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Also, several methods utilizing the principle of least squares were adopted to
the problem of audio declipping. First, Selesnick [92] presented a work on least
squares and its application to signal processing, with declipping being one of the
examples. He proposed to minimize the energy of the third derivative of the signal,
encouraging the filled-in data to have the form of a parabola. This approach is
computationally very efficient since the least-squares problem has a closed-form
solution. No additional information about the clipped samples is exploited, which
may result in solutions inconsistent in the clipped part.

Motivated by the previously-mentioned method, Harvilla and Stern combined the
least-squares approach with the incorporation of explicit constraints on the clipped
samples in a method called Constrained Blind Amplitude Reconstruction (CBAR)
[62], developed for improving the performance of the automatic speech recognition
system. A line search algorithm was used to solve the optimization problem. Even
though CBAR is able to minimize any order of derivative of the reconstructed sig-
nal, the authors suggested that minimizing the second derivative produces the best
results.

The greatest disadvantage of CBAR was its computational complexity, caused by
the strict consistency requirement. The authors tried to reach real-time processing
speed and introduced a method called Regularized Blind Amplitude Reconstruction
(RBAR) [93], where the hard constraint was replaced by a regularization term lead-
ing to a closed-form solution. Since RBAR tends to over-smooth the fricatives, only
voiced frames (detected using cepstral analysis) are processed.

Apart from the declipping methods, the authors also studied the influence of
noise in the audio declipping task and introduced a technique for inferring the am-
plitude and percentile values of the clipping threshold, and developed a statistically-
optimal classification algorithm for accurately differentiating between clipped and
reliable samples in a noisy speech signal [94].

Well-performing but highly computationally demanding methods appear to be
those based on nonnegative matrix factorization (NMF) that were adopted for audio
inpainting and declipping in [95]. Based on the assumption that the power spectrum
is approximately low-rank, the NMF decomposes the power spectrum into a non-
negative dictionary and nonnegative decomposition coefficients. The NMF model
parameters are estimated via the generalized expectation-maximization (GEM) al-
gorithm based on the maximum likelihood optimization, and the missing audio sam-
ples are predicted by using the Wiener filtering. Apart from the algorithm itself,
four different approaches of enforcing the consistency of the solution were presented.

The NMF-based method was also extended to the case of multichannel audio
in [96] by the same authors and in [97] was presented the generalized nonnegative
tensor factorization (NTF) framework for solving audio inverse problems, e.g., audio
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declipping and inpainting, joint audio inpainting and source separation, compressive
sampling recovery, and compressive sampling-based informed source separation.

Table 3.1: Categorization of existing approaches to audio declipping known to the
author, except the ones based on signal sparsity.

Method Modeling
assumptions

Optimization
criterion

Clipping
consistency

Rel. part
consistency

Optimization
algorithm

Janssen’86 [84] AR model ML no yes EM

Abel’91 [85] limited
bandwidth

several yes yes N/A

Fong’01 [86] AR model AR coefs &
correlation coefs

N/A N/A Monte Carlo

Dahimene’08 [88] AR model least squares no yes pseudoinverse

Takahashi’13 [89] AR model low rank of
Henkel matrix

yes yes NSAO

Selesnick’13 [92] smoothness regularized LS no no explicit formula

Harvilla’15a [62] smoothness regularized LS yes no quasi-Newton
method

Harvilla’15b [93] smoothness regularized LS no no explicit formula

Takahashi’15 [90] AR model low rank of
Henkel matrix

yes yes NSAO

Bilen’15 [95] low-rank NMF ML yes yes GEM

Sasaki’18 [91] AR model low rank of
Henkel matrix

yes yes NSAO

Abbreviations: AR: Autoregressive, ML: Maximum Likelihood, GEM: Generalized Expectation–Maximization,
NSAO: Null Space-based Alternating Optimization, LS: Least Squares, NMF: Nonnegative Matrix Factorization.

3.2 Sparsity-based declipping methods
The first declipping algorithm based on sparse representations was published by
Adler et al. [72]. The authors modified the well-known Orthogonal Matching Pur-
suit (OMP) algorithm to incorporate the declipping constraints and called it the
Constrained OMP (C-OMP). The algorithm consists of two principal steps. First,
the OMP is applied ignoring the declipping constraints and thus performing basi-
cally audio inpainting. After the last iteration of OMP, the output support, i.e., the
positions of nonzero coefficients, is fixed and the solution is updated using convex
optimization to fulfill the declipping constraints. This makes the approach very slow
since the last step requires an iterative algorithm. The signal is processed frame-by-
frame using an overcomplete Discrete Cosine Transform (DCT) as the dictionary.
The resulting declipped signal is clip-consistent but inconsistent in the reliable part.

The method introduced by Miura et al. [98] is based on a procedure coined Recur-
sive Vector Projection (RVP) by the authors. It turns out that RVP is actually the
classical Matching Pursuit algorithm restricted to the reliable samples of the signal.
The neighboring samples of the clipped interval (excluding the clipped interval) are
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first analyzed by RVP, and then the clipped samples are estimated as a by-product
of the analysis. Since clipping constraints are not taken into consideration, this
method yields results inconsistent in the clipped part.

Both the above-mentioned methods were used in an approach called “multi-stage
declipping” [99], where either the C-OMP or RVP is combined with a simple spline
interpolation to improve the local consistency for both mentioned methods. The
methods work quite well for longer clipped intervals but they produce “too compli-
cated” waveforms in short clipped intervals, not simple and smooth as the original
signal. Therefore, the multi-stage approach decides whether to use a conventional
method (C-OMP or RVP) or a spline interpolation based on the length of the clipped
interval.

In [100], the authors presented two algorithms—Reweighted ℓ1 minimization with
clipping constraints (Rℓ1CC) and simple Trivial Pursuit with Clipping Constraints
(TPCC). Rℓ1CC approximates the sparsity with ℓ1-norm, which is reweighted in
each iteration according to the change of coefficients in the previous iteration to
enhance the sparsity of the solution. The TPCC aims mainly at computational
efficiency and is based on estimating the value of 𝑘 DFT coefficients using the least
squares and increases 𝑘 until the reconstruction error on the non-clipped samples is
small enough.

The problem based on the weighted ℓ1 minimization was also presented in [101].
The authors utilized for the first time the effect of simultaneous masking and used
the MPEG-1 Layer 1 psychoacoustic model to weight the time-frequency coefficients
during the restoration process. Such an approach discourages the introduction of
distinctively audible signal components (where the masking threshold is low), which
are not likely to be present in the original signal, and signal components that are
less audible (the masking threshold is high) are tolerated to a greater extent, which
should provide better perceptual quality of the restored audio signal. To be more
specific about the method, the signal is processed window-by-window and the opti-
mization task is solved independently for each signal block. The recovered signal is
obtained by the application of the synthesis operator and since the result is incon-
sistent in the reliable part, the authors suggest replacing the reliable samples using
the clipped observation. Once all windows are processed this way, the final signal is
obtained via the overlap-add procedure.

The second method involving psychoacoustics by Záviška et al. [5] is similar
to the previously-mentioned method, but it is designed as completely consistent.
Unlike [101], the paper discusses multiple ways of choosing the weights based on
the masking curves and, apart from the global masking threshold, it also uses the
absolute threshold of hearing and weights that grow quadratically with frequency.
Especially the latter variant achieves very good results, even though it is not psy-

55



choacoustically inspired. Its success might be explained by the fact that the signals
after clipping have a very rich spectrum, while the spectra of the original signals
decay with increasing frequency.

Jonscher et al. [102] adapted a method called Frequency Selective Extrapolation
(FSE), which is commonly used for error concealment, to the speech declipping task.
FSE generates a signal model consisting of Fourier basis functions. Clipped samples
are treated as missing and are replaced by estimated samples from the model.

A different and very effective approach to achieve high-quality declipping results
was presented in [15]. It was based on introducing social sparsity, where the regular-
izer is more general than a “simple” soft thresholding and allows the shrinkage of a
coefficient based also on the values of other coefficients, typically the coefficients in a
kind of “neighborhood.” It is a special case of structured sparsity, where a coefficient
can belong to several groups. The optimization problem formed allows inconsistency
of the reliable part and deviation from the feasible set in the clipped part is penalized
using the squared hinge function. The numerical solution is obtained via Fast Itera-
tive Shrinkage-Thresholding Algorithm (FISTA) with restarting using four different
shrinkage operators—Least Absolute Shrinkage and Selection Operator (LASSO),
Window Group-LASSO (WGL), Empirical Weiner (EW), and Persistent Empiri-
cal Weiner (PEW). The performed tests indicate a significant improvement of the
restoration quality in the case of the group shrinkage operators (WGL and PEW),
with PEW being the best option in terms of signal-to-distortion ratio.

Several research papers utilizing the Alternating Direction Method of Multipliers
(ADMM) were introduced by the authors from the IRISA research group over the
past decade. The first algorithm was presented in [103] and proposed a fully con-
sistent solution to the synthesis-based declipping problem. The ℓ0 approximation
was achieved using the hard thresholding operator, hence the name—Consistent
Iterative Hard Thresholding. In [104] the authors altered their algorithm to solve
the declipping problem formulated using the analysis (cosparse) model and called it
Cosparse Hard Thresholding.

Both algorithms were slightly improved and published in [16] as the SPADE
(SParse Audio DEclipper) algorithm, which was formulated for both the synthesis
case (S-SPADE) and the analysis case (A-SPADE). The main idea lies in increas-
ing the number of TF coefficients that are selected via hard thresholding until the
convergence criterion is met. These algorithms are, to the best of our knowledge,
considered as one of the state-of-the-art algorithms for single-channel audio declip-
ping. In the original paper [16], S-SPADE had been considered significantly slower
than its analysis counterpart. Nevertheless, by exploiting a novel projection lemma
[7] it was shown in [2] that both variants of the SPADE algorithm can be made
equally computationally expensive.
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Eventually, the conference paper [4] revealed that the original synthesis variant of
SPADE solves a slightly different optimization problem than presented in [16], and
a new version of S-SPADE was introduced to solve the true synthesis counterpart
of A-SPADE. This new S-SPADE is comparable to its analysis counterpart in terms
of restoration quality while being even slightly faster. A complete derivation of the
SPADE algorithms with proofs can be found in the technical report [3].

The work of the IRISA group continued with an algorithm focusing on multi-
channel audio, introduced in [105]. This algorithm exploits the structured sparsity
and forms groups of coefficients across the audio channels. It was demonstrated
that performing the restoration algorithm jointly across all channels produces better
restoration results than in the case where each channel is processed independently.

All the above-mentioned algorithms of the IRISA group are unified in a generic
framework for audio signal restoration, demonstrated on declipping and denoising
in the officially unpublished article [106]. Audio declipping only is treated in the
recent article [107], where basically the same generalized framework based on the
means of ADMM is described. Depending on the shrinkage operator, the article
contains Plain (co)sparse Audio Declipper, Social (co)sparse Audio Declipper, and
an approach called Adaptive Social (co)sparse Audio Declipper, which is able to
choose the optimal group pattern from a set of different pre-defined patters and
thus deliver better declipping results than a simple social declipper, where the TF
pattern is fixed. These algorithms are also treated in more detail in the dissertation
thesis of Clément Gautier [24].

Elvander et al. [108] introduced probably the first approach that adapts the grid-
less sparse recovery framework to the declipping problem. The grid-less approach
means that the dictionary does not contain countably many columns but a continu-
ous range of frequencies is available for the representation of the signal. This leads to
an atomic norm minimization problem, which is solved by semidefinite programming
and therefore is computationally expensive.

Chantas et al. [109] built their declipping algorithm upon the Bayesian inference.
They used a synthesis model, where the discrete cosine transform (DCT) coefficients
are modeled as following the Student’s distribution, complying with the assumption
of their sparsity. In this approach, no utilization of clipping constraints is involved.

The sparsity-based methods mentioned so far used fixed and well-known syn-
thesis operators, such as the DCT, DFT, or Gabor transforms. However, another
approach consists in adapting the operator (usually called dictionary) to the ob-
served data. Such a technique for audio declipping was formulated by Rencker et al.
in the conference paper [110] and later in more detail as a unified framework for non-
linear measurements in the article [111]. The authors also published an algorithm
for signal declipping and dequantization using FISTA [112]. Their last work [113]
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focuses on applying the dictionary learning methodology in the analysis domain of
the signal.

So far the latest improvement of the previously-mentioned SPADE algorithms
was published by Emura and Harada in [114], where the authors extended the formu-
lation of the SPADE algorithm to a multiple measurement vector (MMV) optimiza-
tion problem utilizing the ℓ2,0 group norm. In essence, it means that the algorithm
does not process each block of the signal separately but forms a matrix consisting
of several consecutive blocks of signal as columns. In the thresholding step, instead
of 𝑘 largest DFT coefficients, 𝑘 groups of coefficients with the largest ℓ2-norm are
selected. It turned out that this simple extension helps to improve the declipping
results in terms of SDR, however, at the cost of higher computational complexity.

Table 3.2: Categorization of existing single-channel unsupervised declipping ap-
proaches based on signal sparsity.

Method Modeling
assumptions

Optimization
criterion

Clipping
consistency

Rel. part
consistency

Optimization
algorithm

Adler’11 [72] sparsity ℓ0-min yes no OMP
Miura’11 [98] sparsity ℓ0-min no N/A RVP (MP)
Weinstein’13 [100] sparsity reweighted ℓ1-min yes yes CVX
Kitić’13 [103] sparsity ℓ0-min approx. approx. IHT

Defraene’13 [101] sparsity &
psychoacoust.

ℓ1-min yes no CVX

Siedenburg’14 [15] social sparsity social shrinkage approx. approx. (F)ISTA
Kitić’14 [104] sparsity ℓ0-min yes yes ADMM
Jonscher’14 [102] sparsity N/A no N/A N/A
Kitić’15 [16] sparsity ℓ0-min yes yes ADMM
Elvander’17 [108] sparsity atomic norm min yes yes SD

Rencker’18a [110] sparsity &
learned dict.

ℓ0-min approx. approx. alternate GD

Rencker’18b [112] sparsity ℓ1-min approx. approx. FISTA
Rencker’19 [111] sparsity ℓ0-min approx. approx. alternate GD
Chantas’18 [109] sparsity KL divergence no no variational Bayes

Gaultier’19 [24] sparsity&
social sparsity

ℓ0-min yes yes ADMM

Záviška’19 [4] sparsity ℓ0-min yes yes ADMM

Záviška’19b [5] sparsity &
psychoacoust.

ℓ1-min yes yes DR

Gaultier’21 [107] sparsity&
social sparsity

ℓ0-min yes yes ADMM

Li’21 [113] sparsity&
learned dict.

ℓ0-min approx. approx. projected gradient,
least squares

Emura’21 [114] group sparsity ℓ2,0-min yes yes ADMM
Abbreviations: ADMM: Alternating Direction Method of Multipliers, CVX: convex opt. toolbox [115],

DR: Douglas–Rachford alg., (F)ISTA: (Fast) Iterative Shrinkage Thresholding Alg., GD: Gradient Descent,
IHT: Iterative Hard Thresholding, KL: Kullback–Leibler, (O)MP: (Orthogonal) Matching Pursuit,

RVP: Recursive Vector Projection, SD: Semidefinite programming.
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3.3 Machine learning based speech declipping
Machine learning and especially neural networks (NN) have gained much success
in many research fields including audio signal processing, speech recognition, and
natural language processing. More recently, Deep neural networks (DNN) became
very popular due to their ability to deliver high-quality results and process large
amounts of data. DNNs also excel at learning without guidelines, i.e., using the
unsupervised approach, for which there is no need for data labeling. They found
applications in automatic speech recognition, image recognition, natural language
processing, recommendation systems, bioinformatics, medical image analysis, image
restoration, financial fraud detection, etc. [116].

Nevertheless, the application of DNN, or machine learning in general, in audio
restoration tasks is still in its infancy and so far, classical approaches have still not
been overcome. Specifically, in the case of audio declipping, there are no research
papers on general audio declipping. Nevertheless, there exist four research papers
focused on speech declipping.

The very first DNN method addressing speech clipping was published in 2015
by Bie et al. [117]. It examines the influence of clipping on automatic speech recog-
nition, proposes a method for simple clipping detection based on the time-domain
properties of clipped speech, and it also introduces a DNN-based method for clipped
speech reconstruction. The proposed approach uses Mel-frequency Cepstral Coeffi-
cients (MFCC) as features, which are fed into the network. The mean square error
between the MFCC features of the reconstructed speech and the original one was
used as the training objective function. To conduct the training, the stochastic
gradient descent algorithm was utilized.

Another approach for speech declipping [118] is based on the recently proposed
deep filtering technique, which is capable of extracting and reconstructing the de-
sired signal from a degraded input. Deep filtering operates in the STFT domain,
estimating a complex multidimensional filter for each desired STFT bin and then
delivers an estimation of the declipped STFT. The loss function minimizes the re-
construction mean-squared error between the non-clipped and declipped STFTs.

A fully convolutional neural network, namely U-Net, was introduced by Kashani
et al. [119]. This approach, inspired by the idea of image-to-image translation, uses
magnitude STFT spectrograms, which are translated to the corresponding spectro-
gram images of the reconstructed signal. For the training, the mean square error
of the magnitude spectrograms is used as the cost function. At the reconstruction
stage, spectrum images of the clipped speech are extracted and fed to the trained
U-Net declipper to generate the enhanced spectrum images. The resulting declipped
time-domain speech signals are obtained using the inverse STFT, while utilizing the
phase information from the clipped signal.
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The most recent work on speech declipping was introduced by Nair and Koishida
[120]. The authors studied speech distortions like speech clipping, codec distortion,
and gaps in speech and presented two network architectures to solve these tasks in-
dividually. Both architectures are based on the convolutional U-Net architecture—
T-UNet is used for only time-domain approaches, while TF-UNet exploits the time-
frequency information. For speech declipping, the T-UNet delivers better restoration
quality than TF-UNet or the previously-mentioned U-Net declipper [119], suggest-
ing that declipping is a problem best addressed in the time domain. Unfortunately,
no comparison with current state-of-the-art methods on audio declipping is avail-
able. Finally, the authors present a novel approach called Cascaded Time + Time-
Frequency U-Net containing both time and time-frequency U-Nets to solve all three
distortions simultaneously.

Table 3.3: Categorization of existing machine learning speech declipping approaches.

Method Network architecture Modeling domain
Loss

function
Clipping

consistency
Rel. part

consistency

Bie’15 [117] DNN with 3 hidden layers MFCC MSE no no
Mack’19 [118] BLSTM STFT MSE no no
Kashani’19 [119] U-Net magnitude STFT MSE no no

Nair’21 [120] T-UNet, TF-UNet
T-UNet+TF-UNet

time, STFT,
time & STFT

MSE, LSD no no

Abbreviations: BLSTM: Bidirectional Long Short-Term Memory, LSD: Log-Spectral Distance,
MFCC: Mel-Frequency Cepstral Coefficients, MSE: Mean Square Error, STFT: Short Time Fourier Transform,

3.4 Audio soft declipping
Audio declipping can be applied to both types of clipping (hard and soft), neverthe-
less, the vast majority of methods are focused on restoring the hard-clipped signal.
Declipping of the soft-clipped signal, i.e., soft declipping, did not draw much atten-
tion. One of the reasons is that hard clipping as an unintentional corruption of the
signal occurs more often than soft clipping. In addition, the negative effect of hard
clipping is perceptually more pronounced.

Soft declipping has been usually treated in the literature as a blind recovery
of distorted audio signals. Duarte et al. in [121] proposed a method built upon
an approximation of ℓ0-norm and the use of polynomial functions as compensating
structures.

Another method was presented by Málek in [61], who extended the idea of blind
compensation for memoryless nonlinear distortion based on sparsity and proposed
a sparsity-based estimator for the compensation function, which is able to compen-
sate both symmetric and asymmetric distortions.
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Two methods were also presented by Ávila et al.—one based on weighted least
squares [122] and the other exploiting sparsity in the form of weighted ℓ1 minimiza-
tion [123]. The comparison included in the latter work shows that the proposed
method outperforms the previously-mentioned methods [61, 124].

Finally, audio soft declipping was also treated in the work of Mack and Habets
[118] using the Deep filtering technique. This method is described in more detail in
Section 3.3 since it uses machine learning techniques.

Table 3.4: Categorization of existing soft declipping approaches.

Method Modeling
assumptions

Optimization
criterion

Duarte’12 [121] sparsity smoothed ℓ0-min
Málek’13 [61] sparsity several
Ávila’17a [122] smoothness least squares
Ávila’17b [123] sparsity weighted ℓ1-min
Mack’19 [118] Deep Filtering MSE

3.5 Audio dequantization
From the beginning of signal digitization, there has been an effort to mitigate the
perceptually negative phenomenon of digitization, such as the quantization noise,
and to achieve the best possible audio quality with a relatively small number of
quantization levels. Along with the various and more sophisticated quantization
schemes, there have been studies to eliminate the perceptible effect of quantization
via dithering [125] (see more about dithering in Sec. 2.4.1). In this section, the
dequantization methods known to the author are overviewed and summarized in
Table 3.5, which also provides information on the consistency of the solution of each
method.

The very first attempt to restore the already quantized signal was made by
Troughton [126], who used Bayesian statistics and modeled the signal as a sum of
sinusoids or as an autoregressive process of unknown order. The sample values of
the signal are estimated using the Markov chain Monte Carlo (MCMC) method.
The results show that the sinusoidal model yields better results than a simple AR
modeling by approximately 2 dB.

Brauer et al. [80] approximated the dequantization by formulating a convex op-
timization problem in the form of constrained ℓ1-norm minimization, solved using
the Chambolle–Pock algorithm. The work was exclusively focused on speech signals
in a wireless acoustic sensor network with a goal to decrease the transferred bitrate
across the sensors.
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Záviška et al. [8] followed up on the previously-mentioned study by Brauer et
al. [80] and extended the range of evaluation scenarios. They showed that the
optimization problem from [80] can be solved using a simpler and faster Douglas–
Rachford algorithm and also introduced the analysis (cosparse) model, which turned
out to marginally outperform the synthesis model. Experiments also revealed that
using DGT instead of DCT in [80] provides 1 dB higher SDR on average.

The work of Rencker et al. was already mentioned in Sec. 3.2 and consists mainly
in exploiting the dictionary learning approach for sparsity-based methods. Two of
the published papers work not only with clipping but also with signals corrupted
by quantization. Specifically, [112] presents a FISTA algorithm for declipping and
dequantization and [111] describes a unified framework for signals damaged by non-
linear distortions using both synthesis and analysis models of the signal.

Brauer et al. [81] continued with the research on speech dequantization and
proposed to unroll the iterative optimization procedure proposed in [80] in terms
of a closely related neural network architecture called primal-dual networks. Apart
from a traditional MSE as a loss function, a perceptual loss function for the training
of the neural network was designed by applying the weighted filter from speech
coding.

More recently, audio dequantization was also treated by Yoon et al. in [82].
They used deep-learning-based audio dequantization as the last step in a flow-based
neural vocoder to improve the audio quality of generated audio, specifically better
harmonic structure and fewer digital artifacts.

Finally, Záviška et al. [11] discussed a number of sparsity-based approaches to
audio dequantization and compared the results of 10 presented algorithms on a
common dataset. Convex as well as nonconvex approaches were included and all
presented formulations came in both the synthesis and analysis variants.

Table 3.5: Categorization of existing audio dequantization approaches.

Method Modeling
assumptions

Optimization
criterion

Solution
consistency

Optimization
algorithm

Troughton’99 [126] AR model AR coefs N/A MCMC
Brauer’16 [80] sparsity ℓ1-min yes CP
Rencker’18 [112] sparsity ℓ1-min approx. FISTA

Rencker’19 [111] sparsity &
learned dict.

ℓ1-min approx. alternate GD

Brauer’19 [81] primal-dual network weighting
filter-based loss

N/A N/A

Yoon’20 [82] DNN N/A N/A N/A
Záviška’20 [8] sparsity ℓ1-min yes DR, CP
Záviška’21 [11] sparsity ℓ0-min, ℓ1-min both DR, CP, FISTA, ADMM

Abbreviations: ADMM: Alternating Direction Method of Multipliers, AR: Autoregressive,
CP: Chambolle–Pock alg., DR: Douglas–Rachford alg., GD: Gradient Descent,

FISTA: Fast Iterative Shrinkage Thresholding Algorithm, MCMC: Markov chain Monte Carlo.
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4 Thesis aims and objectives
The main aim of the Thesis is to propose and implement effective methods and
algorithms for the restoration of corrupted audio signals with the primary focus on
audio declipping.

To do so, the declipping task will be first formulated as an optimization problem,
and then optimization algorithms will be chosen to solve the problems. The devel-
oped methods can be further improved by involving additional information about
the signal, such as psychoacoustic information or information concerning the charac-
teristics of the clipped samples. A special focus is also paid to improving the results
obtained by methods inconsistent in the reliable part.

A necessary part of the Thesis is the evaluation of the achieved results, which
will be performed on a common dataset using several evaluation metrics. Selected
algorithms will also be applied to the problem of audio dequantization and evaluated
using the same metrics as in the case of declipping.

Following the idea of reproducible research, the implementations of the algo-
rithms for audio declipping and dequantization will be made publicly available.

4.1 Formulation of the declipping problem
First, the declipping problem using sparse representations will be formulated. This
task seems rather simple, but there are still several possibilities how the problem
can be formulated. A critical role plays the sparsity promoting regularizer. It can be
hard thresholding approximating the nonconvex ℓ0-norm, soft thresholding being the
proximal operator of the convex ℓ1 norm or possibly a shrinkage operator promoting
a structure of the time-frequency coefficients.

According to Sec. 1.4, there are two possible approaches to signal modeling—
the synthesis and analysis models. The Thesis will explore both signal models and
compare them in different modeling schemes.

Also, the set of feasible solutions can be formulated in multiple ways. The main
issue is whether the problem should always obey the full consistency according to
(2.4) or whether a slight deviation on the reliable samples could bring an improved
perceptual quality of the reconstructed signal.

4.2 Selecting the optimization algorithm
Since finding the ideal solution to the recovery problem is NP-hard in most of the
cases, the solution is usually approximated and numerically solved using an opti-
mization algorithm.
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For convex optimization problems, the Thesis will focus primarily on proximal
splitting methods. Nonconvex problems will be approached by the means of ADMM.

It is also possible to explore and experiment with different types of optimization
algorithms. The aim is to find an algorithm with sufficient accuracy, fast conver-
gence, robustness, and low computational expenses, although restoration quality
remains the main goal.

Apart from delivering new algorithms, the aim of the Thesis is also to improve
existing ones. For instance, a one-step projection could significantly speed up the
synthesis model-based restoration tasks. Also, it was found out that in [16], the
presented synthesis variant of the SPADE algorithm (S-SPADE) does not fit the
ADMM paradigm. Therefore, finding a proper synthesis variant of SPADE is also
one of the goals of the Thesis.

4.3 Adding a priori information
Even though methods purely based on a sparsity assumption can obtain good
restoration results, there is still room for improvement. Considering some addi-
tional assumptions about the signal may significantly improve the perceived quality
of restoration.

One of the promising ways is to involve psychoacoustics in the restoration task,
which should help to restore mainly perceptually significant coefficients and thus
improve the perceived restoration quality. Also, information about the distribution
of spectral components introduced by clipping could be used to distinguish the
original spectral components and the distortion components.

The Thesis will be looking for ways to obtain and implement the above-mentioned
information into the restoration algorithms.

4.4 Replacing reliable samples
Some of the existing audio declipping algorithms produce solutions inconsistent in
the reliable part with the option to force the consistency in the postprocessing step.
Such a task naturally increases the SDR, however to the best of our knowledge, no
study examined what effect this postprocessing replacement has on the perceived
audio quality. Therefore, this part of the Thesis will study the results and conse-
quences of the mentioned replacement. Also, an effort will be made to introduce
novel methods for quality enhancement of the inconsistent declipping methods ex-
ploiting the knowledge of reliable samples.
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4.5 Evaluation
An indispensable part of the Thesis is the evaluation of the obtained results from
the implemented algorithms. The results of the methods included in this Thesis
will be evaluated and compared to other state-of-the-art methods. To evaluate the
quality of restoration, classical error measures such as the signal-to-distortion ratio
(SDR), and perceptually motivated objective evaluators like PEAQ or PEMO-Q will
be used.

A majority of previous research papers on audio declipping used various audio
datasets, in most of the cases sampled at 16 kHz. Such a low sampling frequency
has been used mainly for computational reasons. One of the goals of this Thesis
is to compare existing audio declipping approaches on a common dataset with ex-
cerpts sampled at 44.1 kHz, i.e., the standard audio quality. This dataset, created
specifically for this task, will be publicly available to enable the comparison of the
declipping methods developed in the future with the already existing ones.

4.6 Audio dequantization
As indicated in Sec. 2.6, audio declipping and dequantization are very similar tasks,
although audio dequantization has gained far less research interest than declipping.
Therefore, as a part of the Thesis, the selected audio declipping algorithms will be
adapted to solve the dequantization problem to examine whether successful audio
declipping methods will also perform well in the dequantization case.

4.7 Algorithm implementation
Last but not least, GitHub repositories with MATLAB implementations of the de-
veloped declipping and dequantization algorithms will be created, containing also
the testing audio excerpts. Moreover, a supplementary web page for audio declip-
ping will be created, containing a comparison of different declipping methods with
the option to compare the achieved results by listening to the declipped excerpts.

65



5 Experiment design and evaluation
This chapter is devoted to a description of the experiments that will be performed
and described later in this Thesis, in order to compare the achieved audio quality
of the proposed restoration algorithms.

First, Sec. 5.1 introduces the audio dataset used for the experiments. Later,
sections 5.2 and 5.3 present the way of modeling the desired damage of the wave-
forms, i.e., clipping and quantization, respectively. The metrics used to evaluate
the quality of the reconstructed audio signals are discussed in Sec. 5.4. Finally,
Sec. 5.5 describes and justifies the time-frequency signal representation used for the
experiments.

5.1 Audio dataset
The audio dataset used for all the following experiments and evaluations consists
of 10 musical excerpts in mono with an approximate duration of 7 seconds and
a sampling frequency of 44.1 kHz.

It was extracted from the database called “Sound Quality Assessment Material
recordings for subjective tests” (SQAM)1 provided by European Broadcasting Union
(EBU). This database consists of 70 audio tracks originally intended for sound qual-
ity assessments, losslessly compressed as FLAC files. The signals are arranged in
the following groups: alignment signals, artificial signals, single instruments, vocal,
speech, solo instruments, vocal&orchestra, orchestra, and pop music. More details
about the audio tracks contained in this database can be found in the companion
document EBU Tech 3253 [127].

The audio excerpts for the experiments were thoroughly selected to cover a wide
range of audio signal characteristics. Since the presented methods are based on
a signal sparsity, the selection took care that different levels of sparsity with respect
to the Gabor transform were included. The dataset consists of the sounds of the vi-
olin, clarinet, bassoon, harp, glockenspiel, celesta, accordion, acoustic guitar, piano,
and the wind ensemble.

Selected audio tracks were transferred into mono signals by averaging the left
and right channels, cut using the Adobe Audition CS6 to an approximate duration
of 7 seconds (depending on the content of the excerpts), and saved as uncompressed
WAV files with 16 bps bit depth and a sampling frequency of 44.1 kHz. The resulting
audio signals are part of Appendix A. The waveforms are drawn in Fig. A.1, and
the respective spectrograms are displayed in Figs. A.2 and A.3.

1https://tech.ebu.ch/publications/sqamcd
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5.2 Modeling of clipping
When clipping a signal for the task of further reconstruction, it is necessary to
decide according to what measures select the clipping levels and also what clipping
levels produce signals of interest from the perceptual point of view. Both of these
questions are answered in the work of Gaultier et al. in [107, 24].

There are three possible means of how to quantify the consequences of clipping.
The simplest way is to focus on the desired dynamic range and directly use the
clipping threshold 𝜃c. This option is used in most of the research papers concerning
clipping, where the audio files were peak-normalized, and the clipping threshold
was selected from the range (0, 1). Nevertheless, the clipping threshold is not very
descriptive, when the original nonclipped audio signal is not available. And even if
the original dynamic range is known, the perceptual level of degradation is highly
dependent on the character of the signal.

The second option is to focus on the number of samples affected by clipping and
directly evaluate the percentage of clipped samples. This metric is useful especially
in real cases when the original clean audio signal or the original dynamic range is
not available. However, it says nothing about how much the samples were altered.

Finally, the third option quantifies the effects of clipping by measuring the rel-
ative level of distortion added to the clean signal due to clipping. It is computed
using the Signal-to-Distortion Ratio (SDR), which is for signals u and v defined as

SDR(u, v) = 20 log10
‖u‖2

‖u − v‖2
. (5.1)

Recall that x denotes the original and y the clipped signal. Hence, the input SDR
is computed as SDR(x, y). As was shown in [107, 24], this option seems to be the
most relevant primary measure of the clipping level since it better correlates with
perceptually motivated measures.

Inspired by the study [107], which suggests that input SDRs above 30 dB are
potentially imperceptible, we performed several informal listening tests based on
which we chose 7 different clipping levels, to cover the range from very harsh clipping
to mild but still noticeable clipping. The selected input SDR values are 1, 3, 5, 7,
10, 15, and 20 dB. The respective percentage of clipped samples and the clipping
thresholds are in dependency on the selected input SDR levels shown in Fig. 5.1.

The clipped audio files were created by artificially hard clipping the input sig-
nals in agreement with the definition of hard clipping in Eq. (2.1), and the clipping
thresholds were computed for each audio excerpt separately to match the required
input SDR level. Since the input SDR is used, there is no need to peak-normalize
the audio samples before processing because the number of clipped samples remains
the same, independently of scaling.
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Fig. 5.1: Percentages of the clipped samples and respective clipping thresholds 𝜃c

for the selected input SDRs.

5.3 Modeling of quantization
There were three possibilities how to quantify the level of clipping: clipping thresh-
old, number of clipped samples, and SDR. From the very nature of quantization,
where all of the signal samples are affected, this basically boils down to the number
of quantization levels, which directly corresponds to the number of bits assigned to
each sample.

For the dequantization experiments, we exploited the classical uniform mid-riser
quantization according to Eq. (2.10) with word lengths ranging from 2 to 8 bps.
This reduction seems rather extreme since the original WAV files have a bit depth
of 16 bps (i.e., 65,536 uniformly-distributed quantization levels) but it actually cov-
ers a whole range from mild quantization distortion, which is perceived only as an
increased level of background noise, to very severe and perceptually unpleasant dis-
tortion. Even though such extreme levels of quantization are usually unusable in
practical applications, they are able to provide a good insight of what the recon-
struction algorithms are capable of.

Fig. 5.2 shows the values of SDR in dependency on the used word length for each
audio excerpt. This figure also points out the fact that adding a single bit to the
word length increases the SDR (SQNR) by approximately 6 dB (see Sec. 2.4, and
Eq. (2.9)).

Before the quantization process, the audio signals were peak-normalized to ensure
that the signals fully exploit the dynamic range available. This peak-normalization
was performed using a 64-bit double-precision floating-point format to ensure that
the distortions caused by the normalization are minimized, and the quantization
was performed directly on the 64-bit values.
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Fig. 5.2: Signal-to-Distortion Ratios for the selected word lengths.

5.4 Evaluation metrics
The task of quality assessment is closely related to the audio reconstruction tasks
since it is essential to gather information about the restoration quality.

The performance measures can be qualified into objective and subjective mea-
sures. Objective measures are able to provide a numerical comparison between the
original and reconstructed signal based on an algorithmic computation. The results
are therefore obtained rather quickly. Subjective listening tests, on the other hand,
require human listeners to evaluate the perceived audio quality, which makes them
expensive and dependent on many not easily controllable parameters.

In this section, we describe the objective evaluation tools that will be used in
this Thesis to evaluate the reconstruction quality.

5.4.1 Signal-to-Distortion Ratio (SDR)

Firstly, we utilize the Signal-to-Distortion Ratio (SDR), which is one of the simplest,
nonetheless, one of the most used methods. The formula is based on the Signal-
to-Noise Ratio (SNR), which is a widely used metric for comparing the level of the
desired signal to the level of the background noise. However, in the case of evaluating
clipping (or quantization), the SDR represents the physical distance of two signals
with respect to the distortion caused by the clipping or quantization. The quality
of the restored signal x̂ is evaluated as SDR(x, x̂), where x represents the original
signal and the SDR is computed using Eq. (5.1).

In such an approach, a deviation on each sample lowers the overall SDR. However,
this may handicap the methods that produce signals inconsistent in the reliable part
(see Sec. 2.3). For this reason, we also define SDRc, which is SDR computed only
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on the clipped samples of the signals, formally

SDRc(x, x̂) = 20 log10

⃦⃦⃦[︁
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2

. (5.2)

When the goal of evaluation is the signal reconstruction, it is beneficial to use rather
the SDR improvement, i.e., the difference between the SDR of the restored and the
clipped signal, formally defined as

ΔSDRc = SDRc(x, x̂) − SDRc(x, y), (5.3)

and equivalently for ΔSDR. In the case of consistency in the reliable part, the
ΔSDR produces the same values, no matter whether the SDR is computed on the
whole signal or on the clipped samples only.

5.4.2 PEAQ

Physical similarity-based measures like SDR provide a good estimation of how close
the reconstructed signal is to the original ground truth. However, the similarity
in waveforms may not necessarily imply perceptual quality. Hence, a quality as-
sessment involving the human perceptual system should be also used to provide
an estimation of perceptual experience. Unfortunately, there is no measure specifi-
cally deployed for estimating the quality of reconstructed signals, and one must rely
on general algorithms for the evaluation of the perceived audio quality, which are
usually tuned for audio compression evaluation.

PEAQ—Perceptual Evaluation of Audio Quality [128], published as the ITU-R
recommendation (BS.1387) in 1999, is considered the standard for audio quality eval-
uation. The BS.1387 standard has two options: a Basic version and an Advanced
version. The Basic version uses an FFT-based ear model, while the Advanced version
uses that model as well as a filter bank-based ear model, which makes it approxi-
mately four times more computationally expensive.

In both cases, the model output variables (MOV) are computed based on the
features extracted from the ear model. The basic version uses 11 different MOVs
derived from the FFT model, such as bandwidths, noise-to-mask ratio, modulation
differences, loudness of distortion, etc. The advanced version, on the other hand,
uses only 5 MOVs, from which two are derived from the FFT model (noise-to-mask
ratio, and harmonic structure of the error) and three from the filter bank-based
model (modulation changes, distortion loudness, and linear distortions). In both
cases, the MOVs are combined using a trained neural network to give a single metric,
the Objective Difference Grade (ODG), which measures the degradation of a test
input relative to a reference input [129]. The ODG scale is interpreted in Table 5.1.
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In this Thesis, we will use the free MATLAB implementation2 of the basic version
of the BS.1387 standard, available from the TSP Lab of McGill University. This
implementation also comes with an exhaustive description of the ITU-R BS.1387
[129], which aims at interpreting the ambiguous or poorly described sections of the
original standard.

Since the PEAQ model assumes that the input signals are sampled at 48 kHz,
and the audio database used is sampled at 44.1 kHz, the signals were upsampled to
48 kHz in order to compute the PEAQ ODG.

Table 5.1: Objective difference grade.

ODG Impairment description
0.0 Imperceptible

−1.0 Perceptible, but not annoying
−2.0 Slightly annoying
−3.0 Annoying
−4.0 Very annoying

5.4.3 PEMO-Q

As another evaluation metric taking into account the human auditory system, we
use the PEMO-Q method that was published in [130] and its MATLAB implemen-
tation was freely available for academic and research purposes on the web of Hörtech
company,3 however, after the merge with Hörzentrum Oldenburg in November 2021
forming Hörzentrum Oldenburg gGmbH, the Hörtech web page redirects to new
web,4 where the PEMO-Q evaluator was not present during the writing of this
Thesis.

PEMO-Q is based on comparing the auditory-inspired “internal representations”
of the tested and reference signals to evaluate the estimate of the perceived quality.
The internal representations are obtained using the proprietary PErceptual MOdel
(PEMO) according to the following processing chain. First, the time-aligned and
level-aligned signals are split into critical bands using a gammatone filterbank. Each
subband is half-wave rectified and then low-pass filtered at 1 kHz to simulate nerve
impulses of the inner hair cells. Envelope signals are then thresholded and passed to
a chain of five consecutive nonlinear feedback loops to model the effects of temporal
masking. In the final step, the internal representation is obtained by analyzing the
signal using a filterbank with 8 filters [130].

2http://www-mmsp.ece.mcgill.ca/Documents/Software
3https://www.hoertech.de/de/produkte/pemo-q.html
4https://www.hz-ol.de/en
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Based on the output from the perceptual model, the Perceptual Similarity Mea-
sure (PSM) is produced and corresponds to the overall cross-correlation coefficients
between the internal representations of the tested and reference signals. Moreover,
PSM𝑡 is computed as a fifth percentile of the weighted time series, which is ob-
tained from the PSM values computed from 10 ms signal frames and weighted by
the moving average of the internal representations [130].

Finally, the PSM𝑡 can be mapped to the ODG scale (see Table 5.1) using a map-
ping function composed of a hyperbola and a linear function. This mapping is
available only for signals with 44.1 kHz sampling frequency but since this is the case
of the database used, no additional resampling is required.

5.5 Sparse representation
Restoration algorithms based on sparse representations rely heavily on the repre-
sentation used. Purely frequency transform, such as Discrete Fourier Transform
(DFT), is not typically a good representative of the signal since audio signals are
not stationary and the frequency changes over time. Therefore, we picked the DGT
(see Sec. 1.6) as the time-frequency representation, with a Hann window as the used
window function, which is defined in Eq. (1.38).

1 3 5 7 10 15 200

2

4

6

8

10

12

14

Input SDR (dB)

Δ
SD

R
(d

B)

512
1024
2048
4096
8192
16384
32768

Fig. 5.3: Comparison of different window sizes in the synthesis-based ℓ1 minimiza-
tion declipping task.

To compare the influence of the window size on the declipping results, we com-
puted ℓ1 minimization-based audio declipping by the Douglas–Rachford algorithm
(Alg. 6, will be introduced further in Sec. 6.1) using a window size ranging from
512 samples (corresponds to 11.61 ms for 44.1 kHz sampling frequency) up to 32,768
samples (approx. 743 ms). The window shift was always set to correspond to 1/4 of
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the window length (i.e., the window overlap was 75 %), and the number of frequency
channels was the same as the window length in samples. As a quality measure, the
ΔSDR was used and the results were averaged across testing audio excerpts. The
obtained results are presented in Fig. 5.3.

The results suggest that longer window sizes tend to perform better. This claim
is violated only for the longest window, where the performance marginally drops for
mild clipping. However, longer windows are not able to reflect the nonstationarity of
audio signals. Moreover, longer windows also cause higher computational intensity.

Therefore, as a compromise between the quality of restoration and a computa-
tional time, we used a Hann window of length 8,192 samples (approx. 186 ms) with
75 % overlap, and 16,384 frequency channels since a redundant DFT may slightly
improve the performance of some algorithms [2].
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6 Audio declipping algorithms
This chapter is devoted to a detailed description and comparison of various sparsity-
based audio declipping algorithms, which forms one of the main contributions of this
Thesis. It contains both the original algorithms developed by the author and the
adopted algorithms, which, nevertheless, have been reimplemented or modified for
better performance.

Specifically, Sec. 6.1 deals with the synthesis variant of the ℓ1 relaxation-based
problem and proposes two proximal algorithms to approximate a solution to this
problem—the Condat–Vũ algorithm and the Douglas–Rachford algorithm. The lat-
ter can be used only with the utilization of a special projection lemma that is also
described in this section, and together with the both mentioned algorithms was
published in the journal article [7].

The analysis variant of the consistent ℓ1 relaxation is presented in Sec. 6.2,
together with the Chambolle–Pock algorithm that approximates the solution to the
optimization problem.

Reweighted ℓ1 was first proposed for audio declipping by Weinstein and Wakin
in [100]. However, they assume only the synthesis model of the signal and provide
no specific algorithm to solve the optimization problem. Therefore, Sec. 6.3 presents
both the synthesis and analysis variant of the reweighted ℓ1 minimization.

Sec. 6.4 provides a solution to the 𝑅-inconsistent ℓ1 minimization-based problem,
originally proposed by Defraene et al. in [101], using the Condat–Vũ algorithm.
Sec. 6.5 introduces the declipping algorithm built on the ISTA scheme and utilizing
Social Sparsity [15]. In the Thesis, we adopted the implementations kindly provided
by Matthieu Kowalski and slightly accelerated the convergence of this algorithm.

The last section before the global comparison, i.e., Sec. 6.6, is devoted to the
heuristic fully consistent ℓ0 approximation-based algorithms, coined by the original
authors as SParse Audio Declipper (SPADE) [16]. The main contribution is re-
implementing both the synthesis and analysis variants of the SPADE algorithm such
that it respects the conjugate structure of DFT coefficients, and exploiting the pro-
jection lemma from [7] to significantly accelerate the synthesis variant (S-SPADE),
as presented in a conference paper [2]. Later, it was found out that the original syn-
thesis variant of the SPADE solves a slightly different optimization problem than
stated. Therefore, we developed a new S-SPADE to be a true synthesis variant of
its analysis counterpart, A-SPADE. This work was published in a conference pa-
per [4], which also comes with a report [3] that provides a detailed mathematical
justification and derivation of the respective algorithms.

Most of the above-mentioned algorithms have also been published as a part of
the audio declipping survey [10].
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Finally, Sec. 6.7 presents a comparison of the above-mentioned audio declipping
approaches with other state-of-the-art methods, both in terms of the restoration
quality and computational time. In the whole chapter, we consider the linear oper-
ators 𝐴 : R𝑁 → C𝑃 and 𝐷 : C𝑃 → R𝑁 with 𝑁 ≤ 𝑃 , 𝐷 = 𝐴*, to be Parseval tight
frames, i.e., 𝐷𝐷* = 𝐴*𝐴 = 𝐼𝑑. As described in Sec. 5.5, the DGT will be used as
the analysis operator 𝐴 and thus IDGT as the synthesis operator 𝐷.

Recall that the set of feasible solutions for audio declipping was defined in the
time domain as

Γ = {x̃ ∈ R𝑁 | 𝑀Rx̃ = 𝑀Ry, 𝑀Hx̃ ≥ 𝜃c, 𝑀Lx̃ ≤ −𝜃c}. (6.1)

In some cases, it is convenient to define the feasible set in the transformed domain
as follows:

Γ* = {z̃ ∈ C𝑃 | 𝑀R𝐷z̃ = 𝑀Ry, 𝑀H𝐷z̃ ≥ 𝜃c, 𝑀L𝐷z̃ ≤ −𝜃c}. (6.2)

6.1 Consistent ℓ1 relaxation – synthesis variant
The synthesis variant of ℓ1-relaxed declipping problem is formulated as

arg min
z

‖z‖1 s.t. z ∈ Γ*, (6.3)

where z ∈ C𝑃 denotes signal coefficients in the transformed domain. The problem
can be rewritten in an unconstrained form as a sum of two functions

arg min
z

‖z‖1 + 𝜄Γ*(z) (6.4)

and as a consequence, it is possible to use the Douglas–Rachford algorithm (see
Sec. 1.5.2, Alg. 1) since the problem (6.4) takes the form of a sum of two convex
functions. Here, 𝑓 represents the ℓ1-norm and 𝑔 is the indicator function 𝜄Γ* . For
simplicity, we set the parameter 𝜀 = 1, hence also 𝜆 = 1 and the only tunable
parameter is 𝛾 > 0, which has influence on the convergence speed. In the following
experiments, the parameter 𝛾 was set to 1. The Douglas–Rachford algorithm solving
(6.4) is shown in Alg. 6.

The two main steps of the algorithm are soft thresholding as the proximal oper-
ator of ℓ1-norm with the threshold 𝛾 (see definition (1.21)), and the projection onto
the set Γ* as the proximal operator of the respective indicator function 𝜄Γ* , which
for Parseval tight frames (𝐷𝐷* = 𝐼𝑑) and a box-type set Γ can be computed using
the following closed-form formula:

projΓ*(z) = z − 𝐷* (𝐷z − projΓ(𝐷z)) , (6.5)
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Algorithm 6: Douglas–Rachford algorithm solving (6.4)

Input: 𝐷, y ∈ R𝑁 , 𝑅, 𝐻, 𝐿

Parameters: 𝜆 = 1, 𝛾 > 0
Initialization: z(0) ∈ C𝑃

for 𝑖 = 0, 1, . . . do
z̃(𝑖) = projΓ*z(𝑖) % using (6.5)
z(𝑖+1) = z(𝑖) + 𝜆

(︁
soft𝛾(2z̃(𝑖) − z(𝑖)) − z̃(𝑖)

)︁
return z̃(𝑖+1)

where the inner projection step is a projection onto a box-type set and in the par-
ticular case of declipping can be computed as a simple time domain elementwise
mapping (︂

projΓ(x)
)︂

𝑛
=

⎧⎪⎪⎨⎪⎪⎩
𝑦𝑛 for 𝑛 ∈ 𝑅,

max(𝜃c, 𝑥𝑛) for 𝑛 ∈ 𝐻,

min(−𝜃c, 𝑥𝑛) for 𝑛 ∈ 𝐿.

(6.6)

Such a projection was developed specially for this case as a part of the dissertation
Thesis and published in the journal article [7].

The discussed projection assumes the following conditions. Let 𝐿 : C𝑁 → C𝑀

be a surjective linear operator with 𝑀 ≤ 𝑁 and let 𝐿𝐿* be a diagonal operator.
Assume multidimensional interval bounds b1, b2 ∈ R̃𝑀 such that b1 ≤ b2, with the
inequality being interpreted element-wise. Then the projection of a vector z ∈ C𝑁 ,

projΩ(z) = arg min
u

‖z − u‖2 s.t. u ∈ Ω, (6.7a)

where Ω = {u ∈ C𝑁 | ℜ(𝐿u) ∈ [b1, b2], ℑ(𝐿u) = 0}, (6.7b)

can be evaluated as

projΩ(z) = z + 𝐿+
(︁
proj[b1,b2](𝐿z) − 𝐿z

)︁
, (6.8)

where
proj[b1,b2](y) = min(max(b1, ℜ(y)), b2) , y ∈ C𝑀 . (6.9)

Here, Eq. (6.9) is the projection of the complex vector y onto a real multidimen-
sional interval [b1, b2] ∈ R̃𝑀 with min and max functions returning pairwise ex-
tremes entry-by-entry. Notations ℜ and ℑ represent the real and imaginary part of
a complex number, respectively.

The proposed lemma says that a projection (following a linear transform 𝐿)
onto the box-type set Ω can be made simpler and faster using projection onto the
interval [b1, b2], which does not involve 𝐿. In (6.8), the application of 𝐿+ reduces to
entrywise multiplication by the inverse diagonal of 𝐿𝐿* followed by 𝐿*, since for the
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surjective case is the pseudoinverse operator 𝐿+ defined through 𝐿+ = 𝐿*(𝐿𝐿*)−1.
Therefore, the cost of 𝐿+ will typically be in the order of the cost of 𝐿*.

Additional details about the projection, including mathematical justification,
proofs, and its application to acceleration of the audio declipping task can be found
in [7].

Before the explicit projector was developed, the projection had to be computed
for all three sets 𝑅, 𝐻, and 𝐿 separately, corresponding to the problem

arg min
z

‖z‖1 + 𝜄𝑅*(z) + 𝜄𝐻(𝐷z) + 𝜄𝐿(𝐷z), (6.10)

where 𝑅* denotes the set corresponding to the reliable samples in the transformed
domain, formally

𝑅* = {z̃ ∈ C𝑃 | 𝑀R𝐷z̃ = 𝑀Ry}. (6.11)

The problem (6.10) can be optimized using the Condat–Vũ algorithm (see Sec. 1.5.5,
Alg. 4). Comparing it with the general optimization problem (1.28) that the Condat–
Vũ algorithm is able to solve, the differentiable function 𝑓 is equal to zero, hence also
the ∇𝑓 = 0. The nonsmooth function 𝑔 is represented by the ℓ1-norm (𝑔 = ‖ · ‖1),
and the sum of functions ℎ𝑚 is the sum of individual indicator functions 𝜄𝑅* , 𝜄𝐻 ,

and 𝜄𝐿. The linear operators 𝐿𝑚 in this particular case are set as 𝐿1 = 𝐼𝑑, and
𝐿2 = 𝐿3 = 𝐷.

Since the differentiable function 𝑓 = 0, the convergence conditions are for this
case defined in (1.30). Because the linear operator 𝐷 forms a Parseval tight frame,
its spectral norm is one, and it holds that

‖𝐼𝑑 + 𝐷*𝐷 + 𝐷*𝐷‖ ≤ ‖𝐼𝑑‖ + ‖𝐷*𝐷‖ + ‖𝐷*𝐷‖ = 1 + 1 + 1 = 3. (6.12)

Then, the parameters 𝜏 and 𝜎 must satisfy

𝜏 · 𝜎 · 3 ≤ 1 =⇒ 𝜏 ≤ 1
3𝜎

. (6.13)

In the experiments, we set 𝜏 = 0.5, 𝜎 = 2/3, and 𝜌 = 0.99. The final adaptation of
the Condat–Vũ algorithm to audio declipping problem (1.27) can be seen in Alg. 7.

The projection onto 𝑅* is computed as

proj𝑅*(z) = z + 𝐷*𝑀⊤
R (𝑀R𝐷𝐷*𝑀⊤

R )−1(𝑀Ry − 𝑀R𝐷z), (6.14)

where the y ∈ R𝑁 represents the clipped signal. The projections onto 𝐻 and 𝐿

are simple elementwise time-domain mappings pushing the samples on the clipped
positions outside the range [−𝜃c, 𝜃c] according to the projection (6.6).

Figure 6.1 demonstrates the convergence of the Condat–Vũ algorithm and the
Douglas–Rachford algorithm in terms of ΔSDRc over time. The obtained data are
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Algorithm 7: Condat–Vũ algorithm solving (6.10)

Input: 𝐷, y ∈ R𝑁 , 𝑅, 𝐻, 𝐿

Parameters: 𝜌 ∈ (0; 2), 𝜎, 𝜏 > 0
Initialization: z(0) ∈ C𝑃 , u(0)

R ∈ C𝑃 , u(0)
H ∈ R𝑁 , u(0)

L ∈ R𝑁

for 𝑖 = 0, 1, . . . do
Combine coefficients and sparsify them:
z̃(𝑖+1) = soft𝜏

(︁
z(𝑖) − 𝜏

(︁
u(𝑖)

R + 𝐷*u(𝑖)
H + 𝐷*u(𝑖)

L

)︁)︁
z(𝑖+1) = 𝜌 z̃(𝑖+1) + (1 − 𝜌)z(𝑖)

Project reliable:
vR = u(𝑖)

R + 𝜎
(︁
2z̃(𝑖+1) − z(𝑖)

)︁
% auxiliary variable

ũ(𝑖+1)
R = vR − 𝜎 proj𝑅* (vR/𝜎) % using (6.14)

u(𝑖+1)
R = 𝜌 ũ(𝑖+1)

R + (1 − 𝜌)u(𝑖)
R

Project clipped from above:
vH = u(𝑖)

H + 𝜎 𝐷
(︁
2z̃(𝑖+1) − z(𝑖)

)︁
% auxiliary variable

ũ(𝑖+1)
H = vH − 𝜎 proj𝐻 (vH/𝜎) % elementwise projection

u(𝑖+1)
H = 𝜌 ũ(𝑖+1)

H + (1 − 𝜌)u(𝑖)
H

Project clipped from below:
vL = u(𝑖)

L + 𝜎 𝐷
(︁
2z̃(𝑖+1) − z(𝑖)

)︁
% auxiliary variable

ũ(𝑖+1)
L = vL − 𝜎 proj𝐿 (vL/𝜎) % elementwise projection

u(𝑖+1)
L = 𝜌 ũ(𝑖+1)

L + (1 − 𝜌)u(𝑖)
L

return z(𝑖+1)

averaged over the testing signals. It can be concluded from the figure that the
DR algorithm converges faster, i.e., the curves level up faster reaching a slightly
higher ΔSDRc value. This is caused most likely by the projection step, where in the
CV algorithm, there are three individual projections (onto 𝑅, 𝐻, and 𝐿) combined
in a sum, thus it is not as efficient as in the DR case, where the projection (6.5)
is exploited. The horizontal axis was converted to time to demonstrate the time
differences between both algorithms, however, the figure also offers an overview of
the number of iterations in form of markers (× for CV and + for DR) emphasizing
every 100th iteration.

Moreover, the time axis was limited to 150 seconds, for clarity. The average pro-
cessing time for the Condat–Vũ algorithm was 313 seconds, while for the Douglas–
Rachford algorithm it was only 138 seconds, making it approximately 2.27× faster.
Note that the given computational time applies to the maximum number of itera-
tions, which was set to 3000 for both algorithms, and does not take into account the
fact that the DR algorithm needs fewer iterations to converge than CV.
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Fig. 6.1: The development of the ΔSDRc over time for CV and DR algorithm.

Because of the above-mentioned reasons, only the Douglas–Rachford algorithm
(Alg. 6) is included in the global comparison of the methods in Sec. 6.7, since both
algorithms provide an approximation of a solution to practically the same problem
(synthesis variant of the consistent ℓ1 minimization).

6.2 Consistent ℓ1 relaxation – analysis variant
The analysis variant of the consistent ℓ1 relaxation problem is formulated as

arg min
x

‖𝐴x‖1 s.t. x ∈ Γ, (6.15)

and the equivalent unconstrained form can be written as

arg min
x

‖𝐴x‖1 + 𝜄Γ(x). (6.16)

Unfortunately, the presence of 𝐴 inside the ℓ1-norm prevents from using the Douglas–
Rachford algorithm as in the synthesis case. Therefore, we use the Chambolle–Pock
algorithm (see Sec. 1.5.4, Alg. 3), which was designed to solve problems of such form
with a general linear operator inside one of the functions.

In this case, we set 𝑓 = 𝜄Γ, and 𝑔 = ‖ · ‖1. For 𝜌 = 1, the Chambolle–Pock
algorithm converges if 𝜁𝜎‖𝐴‖2 < 1. Since 𝐴 forms a Parseval tight frame, i.e.,
‖𝐴‖2 = 1, it is convenient to tune the parameters such that

𝜁 = 1
𝜎

. (6.17)

In the following experiments, all three parameters of the Chambolle–Pock algorithm
were set to 𝜁 = 𝜎 = 𝜌 = 1. The algorithm adapted to solve the audio declipping
problem in the analysis case is shown in Alg. 8.
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Algorithm 8: The Chambolle–Pock algorithm solving (6.16)

Input: 𝐴, y ∈ R𝑁 , 𝑅, 𝐻, 𝐿

Parameters: 𝜁, 𝜎 > 0, and 𝜌 ∈ [0, 1]
Initialization: x(0) ∈ R𝑁 , x̄(0) = x(0), z(0) ∈ C𝑃

for 𝑖 = 0, 1, . . . do
z(𝑖+1) = clip1(z(𝑖) + 𝜎𝐴x̄(𝑖)) % using (6.20)
x(𝑖+1) = projΓ(x(𝑖) − 𝜁𝐴*z(𝑖+1)) % using (6.6)
x̄(𝑖+1) = x(𝑖+1) + 𝜌(x(𝑖+1) − x(𝑖))

return x̄(𝑖+1)

Two principal steps of the algorithm are the clip function and projection onto Γ.
The projection is computed in the time-domain, which is the same simple element-
wise mapping as in (6.6).

The clip function is the result of Fenchel–Rockafellar conjugate of the soft thresh-
olding as the proximal operator of the ℓ1-norm. Using the Moreau identity (1.22)
and the following lemma:

soft𝜏 (u · 𝜏) = 𝜏 · soft1(u), (6.18)

the Fenchel–Rockafellar conjugate can be derived as

prox𝛼𝑓*
2
(u) = u − 𝛼 · prox𝑓2/𝛼(u/𝛼) = u − 𝛼 · prox‖·‖1/𝛼(u/𝛼) =

= u − 𝛼soft1/𝛼(u/𝛼) = u − 𝛼 · 1
𝛼
soft1(u) = u − soft1(u) = clip1(u),

(6.19)

where the resulting clip function can be efficiently computed as

clip𝜆(z) = sgn(z) ⊙ min(|z|, 𝜆). (6.20)

Comparing Alg. 6 with Alg. 8, one can notice that both have identical cost per
iteration dominated by the transformations 𝐴 and 𝐷, even though the Chambolle–
Pock is a more general algorithm.

The comparison of the synthesis (DR) and analysis (CP) approaches to audio
declipping in terms of ΔSDR averaged across the audio excerpts is shown in Fig. 6.2.
The results obtained by the DR algorithm are drawn using a solid line, while the CP
results are drawn using a dashed line. This comparison reveals that the synthesis
approach tends to converge faster and produces consistently better results in terms
of ΔSDR than its analysis variant using the Chambolle–Pock algorithm.
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Fig. 6.2: Average ΔSDR results of the analysis and synthesis variant of the plain ℓ1

minimization in the course of iterations.

6.3 Reweighted ℓ1 minimization
In this section, we follow up on a well-known idea from the field of sparse recovery /
compressed sensing that is usually applied to enhance the sparsity of the solution.
This idea is based on repeating the standard iterative procedure but each time with
different weights, which are computed from the current temporary solution. The
weights are inversely proportional to the magnitude of the respective coefficients,
hence large coefficients are penalized less during the course of runs, while small
coefficients are pushed towards zero by the large weights.

As mentioned in Sec. 3.2, the idea of reweighting applied to audio declipping was
published by Weinstein and Wakin [100] under the acronym Rℓ1CC (Reweighted ℓ1

with Clipping Constraints), and it was shown that reweighting can significantly
improve the overall declipping performance. Nevertheless, the authors assume only
the synthesis model of the signal and provide no algorithm to solve the optimization
problem.

Similarly to the synthesis-based plain ℓ1 minimization problem (6.4), the weighted
variant of the problem reads

arg min
z

‖w ⊙ z‖1 + 𝜄Γ*(z). (6.21)

This problem can be solved via the Douglas–Rachford algorithm 6, as in the case of
the nonweighted variant. The incorporated weights w are reflected in the soft thresh-
olding operator (see Eq. (1.21)), which is for the weighted ℓ1-norm computed as

soft𝜏w(z) = sgn(z) ⊙ max(|z| − 𝜏w, 0). (6.22)
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The resulting synthesis variant of the Rℓ1CC algorithm is for 𝐽 outer cycles shown
in Alg. 9.

Algorithm 9: Synthesis Rℓ1CC using the Douglas–Rachford algorithm
Input: 𝐷, y ∈ R𝑁 , 𝑅, 𝐻, 𝐿

Parameters: 𝜖 > 0, 𝐽 ∈ N
Initialization: z(0) ∈ C𝑃 , w(0) = 1
for 𝑗 = 0, 1, . . . , 𝐽 − 1 do

Solve (6.21) using Alg. 6 with w(𝑗) % returns z(𝑗+1)

w(𝑗+1) = 1
|z(𝑗+1)|+𝜖

% update weights elementwise

return 𝐷z(𝑗+1)

To provide a complete overview, we also include the analysis variant that was
not considered in [100]. The procedure is analogous to the synthesis case. We form
the optimization problem using the weighted ℓ1 minimization in the analysis variant,
formally

arg min
x

‖w ⊙ 𝐴x‖1 + 𝜄Γ(x). (6.23)

Similarly to the previous case, this problem is solvable via the Chambolle–Pock
algorithm (Alg. 8), where the weights w are incorporated in the clip operator, such
that

clipw(z) = sgn(z) ⊙ min(|z|, w). (6.24)

The resulting analysis variant of the Rℓ1CC for 𝐽 outer cycles solved via the
Chambolle–Pock algorithm is described in Alg. 10. Notice that the computational
complexity of the analysis variant is marginally higher, since the Chambolle–Pock
returns vector x(𝑗+1) ∈ R𝑁 in time domain but in order to compute the weights
for the following outer iteration, it is necessary to obtain the coefficients z(𝑗+1) by
computing the analysis, 𝐴x(𝑗+1).

Algorithm 10: Analysis Rℓ1CC using the Chambolle–Pock algorithm
Input: 𝐴, y ∈ R𝑁 , 𝑅, 𝐻, 𝐿

Parameters: 𝜖 > 0, 𝐽 ∈ N
Initialization: x(0) ∈ R𝑁 , w(0) = 1
for 𝑗 = 0, 1, . . . , 𝐽 − 1 do

Solve (6.23) using Alg. 8 with w(𝑗) % returns x(𝑗+1)

z(𝑗+1) = 𝐴x(𝑗+1)

w(𝑗+1) = 1
|z(𝑗+1)|+𝜖

% update weights elementwise

return x(𝑗+1)
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The comparison of the synthesis and analysis approach for the reweighted ℓ1

minimization problems via Algorithms 9 and 10 is shown in Fig. 6.3. To compare
the restoration quality in the course of the outer iterations, we set the maximum
number of outer iterations 𝐽 = 10 and the ΔSDR was computed at the end of each
outer cycle. The obtained ΔSDR results were averaged across the audio excerpts
and are displayed for each clipping input SDR separately.

As Fig. 6.3a shows, in the synthesis case, the reweighting helps to improve the
restoration quality compared to the nonweighted variant, which can be observed in
the figure for 𝑗 = 1. However, a significant improvement can be observed only for
the first three outer iterations. Then the performance in terms of ΔSDR levels out
and even drops a little after reaching 8 iterations.

On the other hand, the ΔSDR results in Fig. 6.3b show the dominance of the
analysis approach, since the results improve with every outer iteration. The analysis
variant is slightly outperformed only for the case of 1 dB input SDR.

1 2 3 4 5 6 7 8 9 100

2

4

6

8

10

12

14

16

Outer iteration 𝑗 (–)

Δ
SD

R
(d

B)

Input SDR
1 dB
3 dB
5 dB
7 dB
10 dB
15 dB
20 dB

(a) synthesis variant (Alg. 9)
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Fig. 6.3: Average ΔSDR results of the synthesis and analysis variants of the
reweighted ℓ1 minimization in the course of outer iterations.

From Fig. 6.3b, it seems that for the analysis variant, it holds that the more outer
iterations we use, the better the declipping result is. However, the perceptually-
motivated measures show that after reaching a certain number of outer iterations,
the restoration quality significantly drops even though the ΔSDR is increasing. For
this reason, we set the maximum number of iterations 𝐽 to 6 for the experiments in
Sec. 6.7.

6.4 𝑅-inconsistent ℓ1 minimization
For a long time, the approach proposed by Defraene et al. [101] was the only
one to include psychoacoustics in declipping (both in the model itself and in the
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evaluation). The psychoacoustic information was incorporated to the optimization
problem in the form of weights, as will be treated in detail in Chapter 7. In this
section, attention will be paid to the optimization algorithm itself.

The optimization task is based on the weighted ℓ1-norm of the coefficients, how-
ever, it allows a deviation on the reliable samples. Following the terminology of
Sec. 2.3, this method can be marked either as 𝑅-inconsistent, or consistent in the
clipped part. The optimization task is formulated as follows:

arg min
z

{︂ 1
2𝜆

‖𝑀R𝐷z − 𝑀Ry‖2
2 + ‖w ⊙ z‖1

}︂
s.t. 𝐷z ∈ ΓH ∩ ΓL. (6.25)

To be more specific about the method, the signal is processed window-by-window,
and the task (6.25) is solved independently for the signal chunks given by windowing.
The recovered signal is obtained by the application of the synthesis 𝐷 to the optimal
coefficients, and by reusing the reliable samples at positions given by the set 𝑅. Once
all the windows are processed this way, the final signal is obtained via the overlap-
add procedure.

The optimization core of the algorithm (called CSL1) in the original paper [101]
was built upon the CVX toolbox [115] but no implementation is available. Here, we
decided to solve the optimization problem using a proximal algorithm, specifically
the Condat–Vũ algorithm (see Sec. 1.5.5, Alg. 4). The constraint on 𝐷z in (6.25)
can be incorporated using the indicator function 𝜄ΓH∩ΓL , which allows to reformulate
the problem in the unconstrained form. The respective functions of the general
problem (1.28) that Condat–Vũ algoritm is able to solve are assigned as follows:

𝑓 = 1
2𝜆

‖𝑀R𝐷 · −𝑀Ry‖2
2, (6.26a)

∇𝑓 = 1
𝜆

(𝑀R𝐷)*(𝑀R𝐷 · −𝑀Ry) = 1
𝜆

𝐷*𝑀*
R(𝑀R𝐷 · −𝑀Ry), (6.26b)

𝑔 = ‖w ⊙ ·‖1, (6.26c)
ℎ1 = 𝜄ΓH∩ΓL , 𝐿1 = 𝐷. (6.26d)

The resulting shape of the Condat–Vũ algorithm for solving (6.25) is presented in
Alg. 11. The projection onto ΓH ∩ ΓL is done using the second and third lines of
(6.6), i.e., only the clipped samples are projected onto the allowed interval.

Since the differentiable function 𝑓 is nonzero, convergence conditions (1.29)
apply. Specifically in this case, Lipschitz constant 𝛽 = 1

𝜆
and operator norm

‖𝐷*𝐷‖ = 1. Therefore, the convergence of Alg. 11 is ensured for

𝜏
(︂ 1

2𝜆
+ 𝜎

)︂
< 1 =⇒ 𝜏 <

2
1
𝜆

+ 2𝜎
. (6.27)

For the following experiments, the balancing parameter was set to 𝜆 = 0.01, and
the Condat–Vũ internal parameters were set as 𝜎 = 1, 𝜏 ≈ 0.0186, and 𝜌 = 0.99.
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Algorithm 11: Condat–Vũ algorithm solving (6.25)

Input: 𝐷, y ∈ R𝑁 , w ∈ R𝑃 , 𝜆 > 0, 𝑅, 𝐻, 𝐿

Parameters: 𝜎, 𝜏 > 0, and 𝜌 ∈ (0, 1]
Initialization: z(0) ∈ C𝑃 , u(0) ∈ R𝑁

for 𝑖 = 0, 1, . . . do
z̃(𝑖+1) = soft𝜏w

(︁
z(𝑖) − 𝜏 1

𝜆
𝐷*𝑀*

R𝑀R(𝐷z(𝑖) − y) − 𝜏𝐷*u(𝑖)
)︁

z(𝑖+1) = 𝜌z̃(𝑖+1) + (1 − 𝜌)z(𝑖)

p(𝑖+1) = u(𝑖) + 𝜎𝐷(2z̃(𝑖+1) − z(𝑖)) % auxiliary
ũ(𝑖+1) = p(𝑖+1) − 𝜎 projΓH∩ΓL

(︁
p(𝑖+1)/𝜎

)︁
u(𝑖+1) = 𝜌ũ(𝑖+1) + (1 − 𝜌)u(𝑖)

return z(𝑖+1)

6.5 Social Sparsity
Siedenburg et al. [15] utilized the concept of social sparsity, as mentioned in Sec. 3.2.
The algorithm is based on solving the following optimization problem:

min
z

{︂1
2‖𝑀R𝐷z − 𝑀Ry‖2

2 + 1
2‖ℎ(𝑀H𝐷z − 𝑀H𝜃c1)‖2

2 +

+ 1
2‖ℎ(−𝑀L𝐷z − 𝑀L𝜃c1)‖2

2 + 𝜆ℛ(z)
}︂

, (6.28)

where the symbol 1 represents the vector of ones, which is as long as the signal.
It is based on a synthesis model and it allows inconsistency of the solution both in
the reliable part (see the first term), and also in the clipped part. However, the
deviation of the clipped samples from the feasible sets ΓH and ΓL is penalized using
the hinge function ℎ, which is for each element of its input defined as

ℎ(𝑢) =

⎧⎪⎨⎪⎩𝑢 for 𝑢 < 0,

0 otherwise.
(6.29)

Since the first three terms in (6.28) are differentiable with a Lipschitz continuous
gradient, the optimization problem can be treated as a sum of two functions, the
second of them, ℛ, being possibly nonsmooth. This observation makes it possible
to use standard optimization algorithms such as ISTA or FISTA (see Sec. 1.5.3).
The resulting ISTA-based algorithm is outlined in Alg. 12.

Looking at the structure of the particular gradients g1, g2, and g3 in Alg. 12,
one can notice that in a practical implementation, a much more efficient approach
of computing the sum of the gradients is possible, containing a single application of
𝐷 and 𝐷*.

The operator 𝒮 in Alg. 12 plays the role of the proximal operator or the regu-
larizer ℛ, which should promote the expected structure of the time-frequency (TF)
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Algorithm 12: ISTA-type Social sparsity declipper [15]

Input: 𝐷, y ∈ R𝑁 , 𝜆 > 0, 𝑅, 𝐻, 𝐿; the shrinkage operator 𝒮
Parameters: 𝛾 ∈ R, 𝛽 = ‖𝐷𝐷*‖
Initialization: ẑ(0), z(0) ∈ C𝑃

for 𝑖 = 0, 1, . . . do
g1 = 𝐷*𝑀*

R(𝑀R𝐷z(𝑖) − 𝑀Ry) % gradients
g2 = 𝐷*𝑀*

H ℎ(𝑀H𝐷z(𝑖) − 𝑀H𝜃c1)
g3 = 𝐷*𝑀*

L ℎ(−𝑀L𝐷z(𝑖) − 𝑀L𝜃c1)
ẑ(𝑖+1) = 𝒮𝜆/𝛽

(︁
z(𝑖)− 1

𝛽
(g1 + g2 + g3)

)︁
% shrinkage step

z(𝑖+1) = ẑ(𝑖+1) + 𝛾 (ẑ(𝑖+1) − ẑ(𝑖)) % extrapolate
return ẑ(𝑖+1)

coefficients z, indexed by 𝑓 (frequency) and 𝑡 (time). The original paper [15] sug-
gests using four types of shrinkage operators—LASSO (L), Windowed Group LASSO
(WGL), Empirical Wiener (EW), and Persistent Empirical Wiener (PEW), which
are defined as follows:

L : 𝒮𝜆(𝑧𝑓𝑡) = 𝑧𝑓𝑡 · max
(︃

1 − 𝜆

|𝑧𝑓𝑡|
, 0
)︃

, (6.30a)

WGL : 𝒮𝜆(𝑧𝑓𝑡) = 𝑧𝑓𝑡 · max
(︃

1 − 𝜆

‖𝒩 (𝑧𝑓𝑡)‖2
, 0
)︃

, (6.30b)

EW : 𝒮𝜆(𝑧𝑓𝑡) = 𝑧𝑓𝑡 · max
(︃

1 − 𝜆2

|𝑧𝑓𝑡|2
, 0
)︃

, (6.30c)

PEW : 𝒮𝜆(𝑧𝑓𝑡) = 𝑧𝑓𝑡 · max
(︃

1 − 𝜆2

‖𝒩 (𝑧𝑓𝑡)‖2
2
, 0
)︃

, (6.30d)

where 𝒩 (𝑧𝑓𝑡) denotes a vector formed from coefficients in the neighborhood of TF
position 𝑓𝑡. Simple LASSO shrinkage is identical to the soft thresholding, therefore,
ℛ = ‖·‖1. The Empirical Wiener, also known as nonnegative garrote, is better than
LASSO in terms of bias [131], however, it still operates on coefficients individually.
EW is a proximal operator of a function ℛ that has no explicit form [132].

In contrast to LASSO and EW, both WGL and PEW involve the TF neigh-
borhood, such that the resulting value of the processed coefficient 𝑧𝑓𝑡 depends not
only on the value of 𝑧𝑓𝑡 itself but also on the energy contained in the neighborhood
𝒩 (𝑧𝑓𝑡). Similarly to EW and LASSO, the difference between PEW and WGL is only
in the second power used by the PEW. A study [133] proved that group shrinkages
could be proximal operators of a function only in the case, where the groups do not
overlap. However, this is not the case and thus WGL and PEW are purely heuristic
operators.
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Fig. 6.4: Demonstration of the neighborhood 𝒩 (𝑧𝑓𝑡) in the TF plane.

In the case of the social shrinkage operators WGL and PEW, it is necessary
to specify the size of the coefficient neighborhood in the TF plane. For the test
case (audio at 44.1 kHz and the DGT) of the experiments, the best-performing
size of the neighborhood was 3×7 (i.e., 3 coefficients in the direction of frequency
and 7 coefficients in time, symmetrically distributed around the point 𝑡𝑓), which
will be used further in the Thesis. Such a setting of the neighborhood 𝒩 (𝑧𝑓𝑡) is
demonstrated in Fig. 6.4. The comparison of different shrinkage operators is in
terms of ΔSDR for the audio declipping task presented in Fig. 6.5.
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Fig. 6.5: Average ΔSDR results for comparison of different shrinkage operators.

A convergence trick, which is for clarity of presentation not included in Alg. 12
is the warm start/adaptive restart strategy [134]: the authors of [15] discovered that
starting the algorithm with a large 𝜆 and decrease it every few hundred iteration,
until the target value of 𝜆 is reached, significantly accelerates the overall convergence
of the ISTA algorithm. Using this strategy may virtually divide the algorithm to
inner and outer iterations, where 𝜆 is updated in every outer iteration.
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Sometimes it happens that the optimization gets stuck (especially in the first
couple of outer iterations) and starts to converge again in the next outer iteration
(i.e., when 𝜆 is decreased). This behavior can be explained by the fact that a large
number of coefficients are thresholded for large values of 𝜆, and the optimal solution
is found in much fewer iterations. For this reason, we introduce the 𝛿 threshold,
which is used to break the outer iteration even if the maximum number of inner
iterations has not been reached. The ℓ2-norm of the difference between the time-
domain solutions of the current and previous iteration is compared with 𝛿.

A comparison of the plain FISTA approach, adaptive restart (AR) strategy, and
adaptive restart strategy with threshold 𝛿 (AR+𝛿) can be seen in Fig. 6.6. The
data for this figure were obtained by reconstructing the signal of an acoustic guitar
with input SDR of 1 dB using the PEW shrinkage operator. For the plain approach
(drawn in blue), we set the total maximum number of iterations to 10,000 and the
target value of 𝜆 was constant and set to 𝜆 = 10−4. Orange color represents the
adaptive restart strategy that was set to perform 500 inner and 20 outer iterations
with 𝜆 logarithmically decreasing from 10−1 to 10−4. Finally, the yellow color denotes
the AR strategy with the threshold 𝛿 to interrupt the inner iteration cycle. The value
of 𝛿 was empirically set to 0.001.

As for the step size 𝛾, it develops according to the formula 𝑘−1
𝑘+5 , where 𝑘 is the

iteration counter for inner iterations (in contrast to the authors of [15], who used a
constant step size 𝛾 = 0.9). The plain ISTA approach with 𝛾 = 0.9 is for comparison
illustrated in Fig. 6.6 using a gray line.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·104

0

2

4

6

8

Total number of iterations (–)

Δ
SD

R
(d

B)

plain ISTA
plain FISTA
FISTA with AR
FISTA with AR+𝛿

Fig. 6.6: Comparison of the acceleration strategies for (F)ISTA social declipper.

Fig. 6.6 reveals that the AR strategy accelerates the computations, which after
10,000 iterations result in a higher ΔSDR value than in the case of plain FISTA.
However, the plain FISTA strategy is better in the first ca 6,500 iterations because
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of the relatively large values of 𝜆 in the case of AR. This disadvantage is removed
by using the 𝛿 threshold, which caused the algorithm to reach the solution in 6,695
instead of the full 10,000. Because of the above-mentioned results, only the variant
with AR and threshold 𝛿 will be used in the global comparison in Sec. 6.7.

6.6 Consistent ℓ0 approximation
Another successful approach to audio declipping was presented in [16], where the
optimization problem is formulated using the ℓ0-norm as

arg min
x,z

‖z‖0 s.t. x ∈ Γ and ‖𝐴x − z‖2 ≤ 𝜀, (6.31a)

arg min
x,z

‖z‖0 s.t. x ∈ Γ and ‖x − 𝐷z‖2 ≤ 𝜀, (6.31b)

where (6.31a) and (6.31b) represent the problem formulation for the analysis and
the synthesis variant, respectively, and 𝜀 is a selected parameter. For a fixed sparsity
𝑘, the problems (6.31) can be recast using the indicator functions as

arg min
x,z,𝑘

𝜄Γ(x) + 𝜄ℓ0≤𝑘(z) s. t.

⎧⎪⎨⎪⎩‖𝐴x − z‖2 ≤ 𝜀,

‖x − 𝐷z‖2 ≤ 𝜀,
(6.32)

where 𝜄Γ(x) makes the restored signal to lie in the set of feasible solutions Γ and
𝜄ℓ0≤𝑘(z) is a shorthand notation for 𝜄{z̃ | ‖z̃‖0≤𝑘}(z), which enforces the 𝑘-sparsity of
the coefficients.

The signal is cut into overlapping blocks and windowed prior to processing.
Therefore, in (6.31), y should be understood as one (and each) of the signal chunks.
The overall resulting signal is made up by the overlap–add procedure. As the trans-
form, SPADE algorithms use the (overcomplete) DFT.

To solve the problem (6.32), SPADE uses the ADMM procedure (see Sec. 1.5.6),
which is based on two minimization steps of the Augmented Lagrangian function
over x and z and update of the dual variable u. This Thesis provides a basic
derivation of the algorithms. For more details, we refer the reader to the report [3],
which contains a complete derivation of the algorithms with mathematical proofs.

A-SPADE

Following the ADMM procedure, the Augmented Lagrangian in the scaled form is
for the analysis variant of (6.32) formed as

ℒ𝜌(x, z, u) = 𝜄Γ(x) + 𝜄ℓ0≤𝑘(z) + 𝜌

2‖𝐴x − z + u‖2
2 − 𝜌

2‖u‖2
2. (6.33)
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The first two steps of ADMM consist in minimizing (6.33) over x and z. Note
that when the Augmented Lagrangian is minimized over x, 𝜄ℓ0≤𝑘(z) can be omitted
since it does not play any role in finding the argument of the minima, and similarly
for the 𝜄Γ(x) in the second step. Moreover, it is possible to omit the 𝜌

2 parameter
together with the term 𝜌

2‖u‖2
2.

Reformulating the steps in the constrained form, we get

x(𝑖+1) = arg min
x

‖𝐴x − z(𝑖) + u(𝑖)‖2
2 s.t. x ∈ Γ (6.34a)

z(𝑖+1) = arg min
z

‖𝐴x(𝑖+1) − z + u(𝑖)‖2
2 s.t. ‖z‖0 ≤ 𝑘 (6.34b)

u(𝑖+1) = u(𝑖) + 𝐴x(𝑖+1) − z(𝑖+1). (6.34c)

The report [3] shows in detail that the x-update (6.34a) is a projection of
𝐴*(z(𝑖) + u(𝑖)) onto Γ, efficiently implemented as a time-domain mapping according
to (6.6). Furthermore, the solution of (6.34b) is obtained by applying the hard-
thresholding operator ℋ𝑘 to (𝐴x(𝑖+1) +u(𝑖)), setting all but 𝑘 its largest components
to zero. This step was improved over the original algorithm to take into account
the complex conjugate coefficients of the DFT. It means that instead of 𝑘 individual
DFT coefficients, 𝑘 conjugated pairs with the largest magnitude are selected. This
causes the reconstructed signal to be real during iterations, which provides slightly
better reconstruction results.

The A-SPADE algorithm (see Alg. 13) is finally obtained by incorporating the
sparsity relaxation procedure to the ADMM steps (6.34). Note that in contrast to
(6.34), the order of the x-update and z-update is inverted, which, however, should
not influence the convergence.

Algorithm 13: A-SPADE from [16]

Input: 𝐴, y ∈ R𝑁 , 𝑅, 𝐻, 𝐿, 𝜀 > 0
Parameters: 𝑠, 𝑟 ∈ N
Initialization: x̂(0) ∈ R𝑁 , u(0) ∈ C𝑃 , 𝑘 = 𝑠

for 𝑖 = 0, 1, . . . until ‖𝐴x − z‖2 ≤ 𝜀 do
z̄(𝑖+1) = ℋ𝑘

(︁
𝐴x̂(𝑖) + u(𝑖)

)︁
x̂(𝑖+1) = arg minx ‖𝐴x − z̄(𝑖+1) + u(𝑖)‖2

2 s.t. x ∈ Γ % using (6.6)
u(𝑖+1) = u(𝑖) + 𝐴x̂(𝑖+1) − z̄(𝑖+1)

if (𝑖 + 1) mod 𝑟 = 0 then 𝑘 = 𝑘 + 𝑠

return x̂(𝑖+1)
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S-SPADE

The original synthesis variant of the SPADE algorithm according to [16] is shown
in Alg. 14. The main steps are again hard thresholding and a projection onto
the set of feasible solutions. The authors pointed out the projection to be the
biggest disadvantage of the S-SPADE because there exists no explicit formula to
compute such a projection and the step has to be computed iteratively. It turned
out that the opposite is true—the projection can be computed explicitly using (6.5),
making the S-SPADE even faster than A-SPADE. The application of the projection
to the S-SPADE algorithm and a more detailed comparison of both algorithms was
published in [2].

Algorithm 14: S-SPADE from [16]

Input: 𝐷, y ∈ R𝑁 , 𝑅, 𝐻, 𝐿, 𝜀 > 0
Parameters: 𝑠, 𝑟 ∈ N
Initialization: ẑ(0) ∈ C𝑃 , u(0) ∈ C𝑃 , 𝑘 = 𝑠

for 𝑖 = 0, 1, . . . until ‖𝐴x − z‖2 ≤ 𝜀 do
z̄(𝑖+1) = ℋ𝑘

(︁
ẑ(𝑖) + u(𝑖)

)︁
ẑ(𝑖+1) = arg minz ‖z − z̄(𝑖+1) + u(𝑖)‖2

2 s.t. 𝐷z ∈ Γ % using (6.5)
u(𝑖+1) = u(𝑖) + ẑ(𝑖+1) − z̄(𝑖+1)

if (𝑖 + 1) mod 𝑟 = 0 then 𝑘 = 𝑘 + 𝑠

return ẑ(𝑖+1)

Later, it was found out that the S-SPADE is not quite a synthesis counterpart
of the A-SPADE because both optimization subtasks are carried over z (in the
domain of coefficients). Although this approach follows the ADMM procedure, it
can be easily shown that the problem formulation corresponding to the S-SPADE
algorithm is

min
w,z

‖z‖0 s. t. 𝐷w ∈ Γ and ‖w − z‖2 ≤ 𝜀. (6.35)

Therefore, we developed a new synthesis variant of the SPADE algorithm, which
is truly the synthesis counterpart of A-SPADE and solves (6.31b). This algorithm,
shown in Alg. 15, is referred to as S-SPADE “Done Right” or S-SPADE “Done
Properly” and was published in [4].

Similarly to the derivation of A-SPADE, the Augmented Lagrangian correspond-
ing to problem (6.31b) is formed as

ℒ𝜌(x, z, u) = 𝜄ℓ0≤𝑘(z) + 𝜄Γ(x) + 𝜌

2‖𝐷z − x + u‖2
2 − 𝜌

2‖u‖2
2, (6.36)
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leading to the following ADMM steps:

z(𝑖+1) = arg min
z

‖𝐷z − x(𝑖) + u(𝑖)‖2
2 s.t. ‖z‖0 ≤ 𝑘 (6.37a)

x(𝑖+1) = arg min
x

‖𝐷z(𝑖+1) − x + u(𝑖)‖2
2 s.t. x ∈ Γ (6.37b)

u(𝑖+1) = u(𝑖) + 𝐷z(𝑖+1) − x(𝑖+1). (6.37c)

The z-update (6.37a) is generally a challenging task to solve, however, relying
on the frequent behavior that ADMM still converges even if the individual steps are
computed only approximately, it is possible to approximate the solution such that

z(𝑖+1) ≈ z(𝑖+1)
appr = ℋ𝑘

(︁
𝐷*(x(𝑖) − u(𝑖))

)︁
. (6.38)

The solution to (6.37b) is obtained by a simple projection in the time domain.
Similarly to the analysis case, incorporating the sparsity relaxation leads to the final
version of the new S-SPADE, which is shown in Alg. 15.

Algorithm 15: S-SPADE Done Properly
Input: 𝐷, y ∈ R𝑁 , 𝑅, 𝐻, 𝐿, 𝜀 > 0
Parameters: 𝑠, 𝑟 ∈ N
Initialization: x̂(0) ∈ R𝑁 , u(0) ∈ R𝑁 , 𝑘 = 𝑠

for 𝑖 = 0, 1, . . . until ‖𝐴x − z‖2 ≤ 𝜀 do
z̄(𝑖+1) = ℋ𝑘

(︁
D*(x̂(𝑖) − u(𝑖))

)︁
x̂(𝑖+1) = arg minx ‖𝐷z̄(𝑖+1) − x + u(𝑖)‖2

2 s.t. x ∈ Γ % using (6.6)
u(𝑖+1) = u(𝑖) + 𝐷z̄(𝑖+1) − x̂(𝑖+1)

if (𝑖 + 1) mod 𝑟 = 0 then 𝑘 = 𝑘 + 𝑠

return x̂(𝑖+1)

The theoretical computational complexity is identical in all three SPADE algo-
rithms and it is dominated by the cost of the transforms.

The three presented algorithms are equivalent for unitary operators, i.e., in the
case 𝐷 = 𝐴* = 𝐴−1. Thus, when a simple DFT as the sparsity-promoting transform
is used, all three algorithms produce the same solution. However, in the case of
a redundant DFT, the obtained solutions differ. Comparison of all three variants of
the SPADE algorithm in terms of the average ΔSDR is shown in Fig. 6.7.

When no redundancy is used (red=1), all three algorithms perform equally, which
results in the black line. When higher redundancies are used, both A-SPADE and
S-SPADE DP significantly outperform the original variant of S-SPADE, especially
for lower input SDR. The analysis variant, however, marginally outperforms the
S-SPADE DP for all clipping levels.
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Fig. 6.7: Average performance in terms of ΔSDR for all three SPADE algorithms
with DFT of different redundancies.

Using the redundant DFT helps to improve the ΔSDR in the case of A-SPADE
and S-SPADE DP, but the original version of S-SPADE tends to perform worse
than when no redundancy is used. Also, the difference in ΔSDR between the re-
dundancy 2 and 4 for A-SPADE and S-SPADE DP is only marginal, however, the
computational cost is more than two times higher for redundancy 4.

Because of the above-mentioned reasons, we include only A-SPADE and S-
SPADE DP to the final comparison in Sec. 6.7. The internal parameters of the
SPADE algorithms were set to 𝑠 = 1, 𝑟 = 2, and 𝜀 = 0.1. To put it in words, every
second iteration is the target sparsity 𝑘 increased by 1 and the algorithms run until
the distance between the primal and the dual variable is smaller than 0.1.

6.7 Results and discussion
This section is designed to perform the overall comparison of the algorithms pre-
sented in this chapter. The experiment design, audio dataset, evaluation metrics,
and the sparse representation used are described in Chapter 5.

Apart from the algorithms presented in this chapter, the comparison includes
four additional algorithms—Constrained Orthogonal Matching Pursuit (C-OMP)
[72], Dictionary Learning (DL) [110], Nonnegative Matrix Factorization (NMF) [95],
and Janssen’s method [84]. More about these methods can be found in Chapter 3
or in the declipping survey article [10]. A major acknowledgment goes to Ondřej
Mokrý for computing the results of C-OMP and Janssen’s method, to Lucas Rencker
for computing the results of the Dictionary Learning based declipping method, and
to Alexey Ozerov for providing the declipped results using the NMF method.
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As described in Sec. 5.5, the tested algorithms utilize a DGT transform using the
8192-sample-long Hann window with 75% overlap and 16,284 frequency channels.
Unfortunately, such a setting could not be used for C-OMP, NMF, and DL due to
the high computational complexity of these algorithms. For C-OMP and DL, we use
a Hann window with the length of 1024 samples, 75% overlap, and twice-redundant
dictionaries, i.e., 2048 frequency bins. The NMF algorithm uses a window of size
2048 and 2048 frequency channels.

The comparison is performed in terms of three objective metrics: ΔSDRc, PEAQ,
and PEMO-Q (see Sec. 5.4 for a more detailed description of these measures). In
the following bar graphs, algorithms coming from the same family share the same
color. If a method comes in both the synthesis and analysis variant, the analysis
variant is graphically distinguished via gray hatching. In the case of Social Sparsity
algorithms, the PEW shrinkage operator uses a gray stippling.

The ΔSDRc results are presented in Fig. 6.8, PEAQ ODG values in Fig. 6.9, and
PEMO-Q ODG values in Fig. 6.10. In general, it is possible to note that the SDR
values correlate to some extent with the perceptually motivated ODG measures.
However, there are some exceptions, see for example the results of the reweighted ℓ1

minimization methods (Rℓ1CC DR and Rℓ1CC CP). Note also that the ODG values
of PEMO-Q are uniformly lower (i.e., worse) than those of PEAQ, but the relation
between the scores of the individual methods is usually retained.

The main conclusions of the results can be summarized as follows:
• Plain ℓ1 minimization performs surprisingly well for high input SDRs. Both the

analysis and synthesis variants perform almost equally—the synthesis variant
is marginally preferred by the SDR measure, however, perceptually motivated
measures slightly prefer the analysis variant.

• Introduction of reweighting improves the plain ℓ1 minimization, especially for
the analysis variant, but this observation holds only for the SDR. In terms of
ODG, the effect is completely reversed. Not only the reweighted variants of
the algorithm perform worse but also the analysis variant is ranked worse than
the synthesis variant.

• 𝑅-inconsistent ℓ1 minimization (CSL1 algorithm) performed somewhat on par
with the plain ℓ1 minimization algorithms for lower input SDRs in terms of
ΔSDRc. However, it failed according to the PEAQ and PEMO-Q measures,
which contradics the results from the original paper [101].

• Using social sparsity leads to remarkable results. In particular, the SS PEW
method (which assumes persistence of frequencies in time) overall performs
the best in terms of the SDR and is one of the best in terms of the perceptual
measures.
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Fig. 6.8: Average declipping performance in terms of ΔSDRc.
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Fig. 6.9: Average declipping performance in terms of PEAQ ODG.
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Fig. 6.10: Average declipping performance in terms of PEMO-Q ODG.
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• Both variants of SPADE algorithm perform similarly and very well in terms
of all three metrics across all levels of degradation, while the analysis variant
is slightly preferred.

• The C-OMP algorithm performed poorly according to both the SDR and per-
ceptual measures. The negative ΔSDRc values are most likely caused by the
fact that when the clipping level is low (many samples are missing), the con-
strained optimization often fails to converge and as the final solution is con-
sidered the output of the (unconstrained) OMP.

• The bad performance of the Dictionary Learning may be probably attributed
to the fact that it uses the IHT algorithm [103] in its sparse coding step,
which has been surpassed by its successor (SPADE), and it also uses a smaller
window size, which may according to Fig. 5.3 reduce the quality of the achieved
results. Another issue could be that the initial dictionary is the real-valued
DCT and that the iterates of the algorithm remain in the real domain, causing
phase-related artifacts.

• In the medium to mild clipping regime, NMF is the clear winner in terms
of ODG and it also performs very well in SDR. In the case of more severe
clipping (1 and 3 dB input SDR), NMF performs slightly worse, however it is
still competitive.

• The Janssen method performs well only in the very high SDR regime, otherwise
it fails due to the lack of reliable samples. Even though this method performs
on par with state-of-the-art methods for audio inpainting (for compact gaps),
it is not suited for the declipping task.

Besides the reconstruction quality, which is the main concern of this Thesis,
also computational complexity can be an important factor to consider. The average
worst-case computational time of the algorithms per one second of 44.1 kHz audio
for each algorithm is depicted in Fig. 6.11. One can notice that the performance
of the declipping methods is far from real-time. However, the computational time
may be reduced in exchange for the restoration quality (by altering some of the
parameters, using different settings for the representation used, or lowering the
number of iterations, for instance).

It is worth mentioning that the computational time is independent on the clipping
threshold for some of the methods, while for other methods it can make a significant
difference. Particularly, the ℓ1-minimization-based problems (ℓ1 DR, ℓ1 CP, Rℓ1CC
DR, Rℓ1CC CP, CSL1, SS EW, and SS PEW) have usually a constant computational
time, dependent mostly on the number of iterations. For the SPADE algorithms,
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Fig. 6.11: Average worst-case computational complexity of the algorithms per a sec-
ond of audio.

it holds that the higher the input SDR, the longer it takes for the algorithm to
converge. The processing time varies between 22 and 64 seconds for A-SPADE, and
14 to 52 seconds for S-SPADE. The same dependency holds also for the dictionary
learning approach, which takes between 1 to 2 minutes. The C-OMP algorithm
varies between 5–10 minutes. NMF is computationally the most demanding method,
with an average computational time of 30 minutes per one second of audio but for
the lowest clipping threshold it may rise up to 1 hour. The Janssen algorithm also
heavily depends on the input SDR—it takes about 16 minutes per one second of
audio for 1 dB input SDR, but for 20 dB input SDR it takes only 5–15 seconds.

The computations were performed on a PC with Intel Core i7-9700K CPU and
64 GB of RAM. It ran on MATLAB 2019b, while the LTFAT toolbox with some
pre-compiled C functions was used for computing the signal synthesis and analysis.

97



7 Incorporating psychoacoustics into audio
declipping

Until recently, the only algorithm exploiting any additional information based on
psychoacoustics was by Defraene et al. [101]. The authors utilized the effect of
simultaneous masking and used the MPEG psychoacoustic model to weight the
time-frequency coefficients during the restoration process. Such an approach dis-
courages the introduction of distinctively audible signal components (where the
masking threshold is low), which are not likely to be present in the original sig-
nal, and signal components that are less audible (the masking threshold is high) are
tolerated to a greater extent.

This approach was coined by the authors as Perceptual Compressed Sensing using
ℓ1 minimization (PCSL1), even though it has nothing in common with the actual
compressed sensing. The optimization problem solved is described in more detail in
Sec. 6.4 and the Condat–Vũ algorithm (see Alg. 11) is adapted to approximate the
solution to this problem. However, this algorithm (without perceptual weighting)
is not consistent with the feasible set Γ and turned out not to be very efficient in
Chapter 6.

In this chapter, in contrast to the PCSL1 algorithm, we utilize the fully consis-
tent optimization problems based on the weighted ℓ1 norm defined in Eq. (6.21)
and Eq. (6.23) for the synthesis and analysis model of the signal, respectively.
These tasks are solved using the Douglas–Rachford and Chambolle–Pock algorithms.
Moreover, three possible constructions of the weights are presented—based on the
absolute threshold of hearing, on the global masking threshold, and on a quadratic
curve.

The presented approaches for the synthesis variant using the DR algorithm were
published in a conference paper [5].

7.1 Absolute threshold of hearing
The equal loudness contours and the absolute threshold of hearing (for more details
see Sec. 1.7.2) represent a good indicator of the sensitivity of human ear at certain
frequencies. Therefore, the main idea of using the ATH in the declipping task aims
at eliminating the negative effects of clipping especially at frequencies where the
human ear is most sensitive. This can be achieved by weighting the TF coefficients
in the minimization task (6.21) or (6.23) such that large weights correspond to
frequencies with low respective ATH values and vice versa.
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Since the task of creating the vector of weights from the ATH is not straightfor-
ward, we examine the following three possibilities:

wATH1 = (t − min(t) + 1)−1, (7.1a)
wATH2 = −t + 𝜏, (7.1b)

wATH3 = 2 · 10−5 · 10(−t+𝜏)/20, (7.1c)

where t represents the vector of the ATH values for equispaced frequencies computed
according to (1.40), and 𝜏 is the parameter that sets the maximum value of the ATH
in dB. This parameter was empirically set to 𝜏 = 100. Notice that wATH3 is basically
wATH1 converted from dBSPL to the acoustic pressure in Pa. All three operations in
(7.1) are conducted element-wise.

In contrast to Defraene et al. [101] who exploited a simple inversion of the
masking curve, the presented options (7.1) are designed in such a way that the
resulting weights are always nonnegative. Even though the values of the weights
approach to zero for high frequencies, only the possibility wATH2 allows some weights
to be zero. This allows a complete freedom of the coefficients magnitude since due to
zero weights, the respective coefficients do not contribute to the minimized solution.

The final step of the weights computation is the peak normalization so that the
largest value of the weights is 1. The normalization does not influence the overall
declipping result, but it affects the speed of convergence and indirectly also the
setting of the DR parameter 𝛾, which can be this way set to the same value as in
the case of plain ℓ1 minimization, i.e., 𝛾 = 1.

The resulting weights computed according to the three options (7.1) are along
with the normalized ATH curve displayed in Fig. 7.1.
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Fig. 7.1: Peak-normalized ATH curve and peak-normalized weights computed ac-
cording to the three options in (7.1).
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7.2 Global masking threshold
Combining the ATH with the effect of simultaneous masking gives the global mask-
ing threshold (GMT), see Sec. 1.7.3 for more details. The information contained in
the GMT can be used to focus on perceptually important components of the signal,
while less audible components can be tolerated to a greater extent because they will
be masked and thus not perceived. Consequently, the weights should be constructed
in a similar way to the case of ATH, i.e., low values of GMT should produce large
weights and vice versa. To do so, we utilized the same three possibilities (7.1), only
t now represents the GMT, resulting in weights wGMT1, wGMT2, and wGMT3. These
weights are for one block of signal shown in Fig. 7.2, together with the respective
GMT curve and a DFT spectrum of the signal block.
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Fig. 7.2: Input DFT spectrum and corresponding global masking threshold from
which the weights are computed according to (7.1).

To compute the GMT from the obtained data, a slightly modified MPEG-1
Psychoacoustic Model 1 (see Sec. 1.7.4) is used. The official standard is strictly
limited to 512-sample long windows, and the used representation works with 8,192
samples long windows with 16,384 frequency channels. Hence, we used a slightly
modified and simplified version of the psychoacoustic model, which is not restricted
in terms of the block length. However, such a modification does not influence the
basic principles of the psychoacoustic model.

In an ideal case, the GMT should be computed from the ground-truth signal,
which is, however, not known in real applications. Computing the GMT from the
observed (i.e., clipped) signal y may yield a biased estimate of the significant spectral
components, especially for low clipping thresholds. Therefore, a way must be found
to obtain a more correct GMT for the task (6.21) or (6.23).
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Fig. 7.3: Comparison of the sources for computing the GMT.

Defraene et al. [101] tackle this problem by using a recurrent architecture, where
the 𝑛-th declipped block of signal serves as a source for the psychoacoustic model
to obtain the GMT, which is used for the computation of the weights for declipping
the (𝑛 + 1)-th block of the signal. We utilize a slightly different approach, where
we first solve the declipping problem by a plain ℓ1 minimization without weighting,
and then we use the recovered signal as the basis for the GMT estimation.

To estimate the influence of the selected source of the psychoacoustic model for
the generation of the weights, Fig. 7.3 presents a comparison of the three different
choices (original ground truth, restored signal, and the clipped observation) in terms
of the PEMO-Q ODG. Similar results are obtained also using ΔSDR and PEAQ.
For this experiment, the weights are generated from the GMT using (7.1a). The
figure confirms the hypothesis that the best declipping results are obtained using
the weights computed from the ground-truth signal. Using the reconstructed signal
helps to improve the performance compared to the case when the clipped signal is
used. This improvement is noticeable mainly for medium and mild clipping levels,
where the reconstruction using plain ℓ1 minimization is sufficient.

7.3 Parabola-based weights
Apart from the ATH and GMT based variants, we also include a third option which
is based on the idea that most of the energy in audio signals is usually concentrated
at lower frequencies (see spectrograms in Figs. A.2 and A.3), and that clipping
introduces artificial higher harmonics that were not present in the original signal
(see Sec. 2.1). Consequently, the weights are constructed in such a way that the
higher harmonics are suppressed, while the lower frequencies are preserved.
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A simple and effective approach to addressing this issue is to weigh the coeffi-
cients linearly, however, better restoration results are obtained when a second-order
polynomial is used. Formally, these weights are for the real-valued DGT obtained
as wp = m ⊙ m, where m = [1, . . . ,

⌊︁
𝑀
2

⌋︁
+ 1], where 𝑀 is the number of frequency

bins of the DGT.
As in the case of ATH and GMT inspired weights, the parabola-based weights

are peak-normalized to fit the range [0, 1]. The resulting normalized weights are
displayed in Fig. 7.4.
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Fig. 7.4: Peak-normalized parabola-based weights.

7.4 Results and discussion
This section aims at evaluating the declipping results obtained using the above-
described possibilities of incorporating psychoacoustical information into audio de-
clipping, and also comparing these approaches to the most successful methods from
Chapter 6. For easy comparison, we use the same experiment design as in Sec. 6.7,
i.e., the same audio dataset, clipping levels, parameters of the DGT, etc.

First, we focus on the comparison of different weights—both in terms of the
model (ATH, GMT, parabola) and the method of calculating the weights according
to Eq. (7.1). This comparison is performed on a synthesis variant of the problem
(6.21) using the Douglas–Rachford algorithm (Alg. 6).

The average ΔSDR values for all proposed choices of weights are illustrated in
Fig. 7.5. The results indicate that weighting with the GMT is a better idea than
using a simple ATH curve. Also, the best variant of converting the GMT or ATH
curves into the actual vector of weights w seems to be the one using the inversion, i.e.,
Eq. (7.1a). Nevertheless, among all the choices, the best results by far are obtained
by the parabola weights, which produce approximately 10 dB better results than
the plain ℓ1 minimization.
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Fig. 7.5: Average performance in terms of ΔSDR for all weighting variants.

The PEAQ results shown in Fig. 7.6 indicate that weights based on the ATH
do not help to enhance the quality of restoration compared with the plain ℓ1 min-
imization. Weighting based on the GMT, on the contrary, may improve the ODG
values of the restored signal but only when the first option (7.1a) of computing the
weights is used. The best restoration quality, according to PEAQ, is delivered by
the quadratic weights wp, which corresponds with the SDR values.
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Fig. 7.6: Average performance in terms of PEAQ for all weighting variants.

The PEMO-Q results plotted in Fig. 7.7 are a little bit more conservative than
the PEAQ ODG values. However, the order of the approaches remains more or
less the same, with the quadratic weights wp being the best option. PEMO-Q also
suggests smaller differences among the methods and prefers the results obtained via
GMT weights over the plain ℓ1 minimization except for wGMT2 for high input SDRs.
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Fig. 7.7: Average performance in terms of PEMO-Q for all weighting variants.

The second part of this section focuses on a global evaluation of the results ac-
cording to all three metrics, i.e., ΔSDRc, PEAQ, and PEMO-Q. In this comparison,
we include all three weight types (ATH, GMT, parabola) along with the nonweighted
variants. However, for weights based on the ATH and GMT, we use only the first
inverting option (7.1a) since it provides the best results. Apart from the synthesis
model, the optimization problem utilizing the analysis model of the signal (6.23)
solved via the Chambolle–Pock algorithm (Alg. 8) is encompassed. For compari-
son, we include Defraene’s approaches [101] CSL1 (nonweighted variant), PCSL1
(weighted using the GMT and the recursive architecture), and we also incorporate
the parabolic weights into this algorithm, leading to a Parabola-weighted CSL1
(PWCSL1). For reference, the two best-performing algorithms from Chapter 6, i.e.,
SS PEW and NMF, are also part of the evaluation.

The ΔSDRc results are presented in Fig. 7.8, PEAQ ODG values in Fig. 7.9,
and PEMO-Q ODG values in Fig. 7.10. In the figures, the algorithms (and different
types of weights) are distinguished using colors, and the analysis variant of the
algorithms is differentiated using gray hatching.

To briefly summarize the obtained results, we note that the proposed fully-
consistent approaches significantly outperform the CSL1-type algorithms. When
weighting is utilized, the analysis variant using the Chambolle–Pock algorithm
marginally outperforms its synthesis counterpart. The best results obtained by the
ℓ1 CP using the quadratic weights are compatible with the state-of-the-art methods,
and in some cases (especially for very low input SDRs) are even slightly better.
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Fig. 7.8: Average declipping performance in terms of ΔSDRc.
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Fig. 7.9: Average declipping performance in terms of PEAQ.
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Fig. 7.10: Average declipping performance in terms of PEMO-Q.
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8 Replacing reliable samples
As presented in previous chapters, some audio declipping methods produce wave-
forms that do not fully respect the actual process of clipping and allow a deviation
from the consistency set Γ (see its definition in (2.4)). In this chapter, the focus
is paid to declipping methods producing solutions inconsistent in the reliable part
(𝑅-inconsistent), for which it generally holds that 𝑀Rx̂ ̸= 𝑀Ry, where x̂ ∈ R𝑁

represents the reconstructed signal obtained by 𝑅-inconsistent method, and y ∈ R𝑁

is the clipped observation.
Specifically, the 𝑅-inconsistent methods from Chapters 6 and 7 will be examined.

Namely, these methods are C-OMP [72], the family of CSL1 methods [101] (see
Sec. 6.4), ISTA-type Social Sparsity algorithm [15] (see Sec. 6.5), and dictionary
learning [110].

This chapter examines what effect on perception it has if the output of such
𝑅-inconsistent methods is pushed towards consistent solutions by postprocessing.
First, a simple method based on a straightforward replacement of the reliable sam-
ples is described in Sec. 8.1. Consequently, two different solutions are introduced
to cope with the negative effects of the basic replacement—one based on audio
inpainting (Sec. 8.2) and the other exploiting crossfading with the clipped signal
(Sec. 8.3).

The above-described problem is illustrated on a short piece of audio signal in
Fig. 8.1. The original unclipped waveform is displayed in gray, and declipped solu-
tion x̂ obtained by the inconsistent CSL1 algorithm is painted in blue. Moreover, the
figure illustrates three replacing strategies described further in this chapter—basic
replacement (BR), inpainted replacement (IR), and crossfaded replacement (CR).
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Fig. 8.1: Demonstration of various replacement strategies on a short piece of audio
signal declipped using the CSL1 algorithm.
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8.1 Basic replacement
The 𝑅-inconsistent solutions may be easily turned into consistent by straightforward
replacement of the reliable samples from the clipped observation, formally 𝑀Rx̂ =
𝑀Ry. Some 𝑅-inconsistent algorithms even include this task as the final step of
declipping [101].

This basic replacement (BR) strategy is illustrated in Fig. 8.1 in orange color.
At the same time, this figure also reveals the main problem of the basic replacement
strategy, which is the risk of creating sharp transitions between the reliable samples
(newly replaced by parts of the observed signal) and the rest of the signal (i.e.,
the reconstructed peaks). Such a nonsmooth phenomenon results in an undesirable
occurrence of broadband spectral components, which may have a negative effect on
the perceived quality of the restored audio.
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Fig. 8.2: Average ΔPEAQ ODG values obtained by the basic replacement strategy.

Nevertheless, the gain in the perceptual quality of the declipped audio obtained
by the simple replacement strategy can outweigh the just described disadvantage, as
visible in Fig. 8.2. This figure shows the average PEAQ ODG improvement (ΔPEAQ
ODG) obtained by applying the basic replacement method to the 𝑅-inconsistent
solutions from various declipping algorithms. The average is computed over the
ODG values of individual excerpts. The results suggest that the basic replacement
method is beneficial in almost all the cases with the exception of some of the methods
(CSL1, PCSL1, and PWCSL1) at lower input SDRs. Generally, the improvement
grows with increasing input SDR, reaching up to two grades on the ODG scale in
the case of the PCSL1 algorithm.
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8.2 Inpainted replacement
To leverage the knowledge of reliable samples while avoiding the sharp edges at the
transitions, a method based on audio inpainting was published in [12]. The main
idea of this approach combines the BR method with audio inpainting, such that a
number of samples at the beginning and at the end of each clipped section of the
signal are “deleted” and then estimated using a selected audio inpainting method,
while the “middle” part of the clipped sections along with the (replaced) reliable
samples are fixed.

The task of audio inpainting can be formulated similarly to audio declipping by
omitting the constraints on the clipped samples. Therefore, only a condition on
reliable samples x̂ ∈ ΓR is required, which results in a simplified projection step but
it is possible to use the same algorithms as for the declipping task (see Chapter 6).
The problem is formulated as a plain ℓ1 minimization in the synthesis variant (see
problem (6.4)) and the Douglas–Rachford is used to approximate the solution to
this problem. This approach is coined Inpainted replacement (IR).

An example of the IR method is illustrated in Fig. 8.1. It shows that this method
can in some cases reduce the sharp transitions while reusing all of the reliable samples
(e.g., between samples 10 and 12). However, it may cause also unwanted deviations
from the reconstructed samples (e.g., between samples 16 and 19) or break the
consistency in the clipped part (e.g., samples 0 and 1).

Fig. 8.3 displays the comparison of IR and BR approaches by plotting the aver-
age difference between the PEAQ ODG values obtained by IR and BR. The most
significant observation is that the IR strategy outperforms the basic replacement
only for declipping methods that were inferior to prior any replacement (see Sec. 6.7
for individual results of the declipping methods). For a priori favorable methods,
such as SS PEW, this strategy fails.
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Fig. 8.3: Average PEAQ ODG improvement of IR over BR.
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Apart from the inpainting using plain ℓ1 minimization approach, the work [12]
also introduces a more complex model based on adaptive reliability of the declipped
samples. In contrast to the plain IR approach, it allows a nonbinary classification of
the reliability of the declipped samples. In other words, during the inpainting algo-
rithm it is possible to define the reliability of the samples based on their affiliation
to one of the sets of samples (ΓR, ΓH, or ΓL), and the distance from the transition.
However, it turns out that this approach only magnifies both the gains and losses
obtained by the plain IR.

8.3 Crossfaded replacement
Another method designed to suppress the negative effect of sharp transitions caused
by the BR method was introduced in [14]. The main principle of this method lies in
crossfading the inconsistent declipping solution with the observed signal such that
the reconstructed peaks gradually blend into the reliable parts.

Even though the idea of crossfading is fairly simple, there are several options
and parameters to choose from. First of all, it is the location of the crossfaded
region, which can be placed either in the clipped part, in the reliable part, or in the
middle (thus affecting both parts). From the three options, only the transition in
the reliable part is not affected by the initially clipped samples.

The second parameter is the type of crossfade w ∈ R𝐿. In this application, we
examined a simple linear crossfade, and a smooth crossfade, which was modeled
using the squared sine function, such that

𝑤𝑙 = sin2
(︃

𝑙𝜋

2(𝐿 + 1)

)︃
, 𝑙 = 1, . . . , 𝐿. (8.1)

Here, 𝐿 represents the length of the crossfaded section, which determines the number
of modified samples in each transition. This type of smooth crossfade actually
corresponds to a part of the Hann window (compare with Eq. (1.38)). The length
of the crossfaded section 𝐿 must be set carefully. In the case of transition in the
reliable part, the longer the transition is, the smoother one signal blends into the
other. However, more samples will differ from the ground truth this way.

Hand in hand with specifying the crossfade length, it must be decided how to
treat segments that are shorter than the predefined length. These segments can be
either ignored (keeping the samples from the restored signal x̂ unaltered), replaced
using the BR strategy (using samples from clipped signal y) or the length of the
crossfade can be adaptively shortened to fit the processed segment.
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Given the binary vector mR = [𝑚R1, . . . , 𝑚R𝑁 ]⊤ ∈ {0, 1}𝑁 , whose entries are
represented by 1 in reliable positions, formally

mR =

⎧⎪⎨⎪⎩1 for 𝑛 ∈ 𝑅,

0 otherwise,
(8.2)

and analogously defined complementary binary vector mC for clipped positions, it
is possible to introduce vectors mRw, mCw ∈ R𝑁 , which are created from the binary
vectors mR and mC by replacing the respective segments with the fade transition.
Note that also for these vectors it holds that mRw +mCw = 1. Then, the crossfaded
replacement can be efficiently implemented using mRw and mCw as

x̃ = mRw ⊙ y + mCw ⊙ x̂, (8.3)

where y ∈ R𝑁 is the clipped signal and x̂ is the output from the 𝑅-inconsistent
declipping algorithm. The vector mRw using linear and smooth crossfades for 𝐿 = 8
with adaptive shortening is illustrated in Fig. 8.4. Notice that the first segment of
reliable samples is 27 samples long, thus the full available length of the crossfade
(𝐿 = 8) is utilized. The second segment demonstrates the adaptive shortening
approach. Since it contains only 11 reliable samples, the length of the crossfaded
section is shortened to 5 samples.
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Fig. 8.4: Demonstration of the crossfaded replacement method.

Experimenting with the possible combinations of parameters showed convinc-
ingly that the transition in the reliable part produces the best perceptual results
according to both PEAQ and PEMO-Q, even though some of the reliable samples
are altered this way, thus the result is not fully 𝑅-consistent. In terms of the width
and shape of the crossfades, the results vary according to the evaluation metric.
PEAQ seems to respond positively to the smooth crossfade and ignoring the pro-
cessing of shorter segments, while PEMO-Q favors the linear transition and adaptive
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shortening approach. Nonetheless, the differences between these setups are negligi-
ble (up to 0.1 on the ODG scale).

As a compromise for both PEAQ and PEMO-Q measures, we selected 8 samples
long (≈ 181.4 µs) smooth crossfade with adaptive shortening for further experiments.
The comparison of the CR and BR approaches in form of the average difference
between ODG values is displayed in Fig. 8.5. In contrast to the IR approach, the
CR delivers PEAQ ODG improvement over the BR strategy across all declipping
algorithms and input SDRs (with negligible exceptions for some methods at 1 and
20 dB input SDR). Also, the computational complexity of the CR approach is much
lower than in the case of the IR method.
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Fig. 8.5: Average PEAQ ODG improvement of CR over BR.

The SS PEW algorithm, which is in fact an inconsistent method, turned out to
be one of the top-performing declipping methods from previous chapters (and from
the declipping survey [10]). This naturally raises a question of whether the same
perceptual result can be obtained in fewer iterations by applying the CR method.

Article [14] presented the evolution of SDR in the clipped part and in the reliable
part. The figures therein show that the SDR in the clipped part stabilizes after
reaching a certain value, while SDR in the reliable part continues to grow. Therefore,
further iterations only refine the result at the reliable positions. Such an observation
supports the idea of terminating the iterations of SS PEW earlier and applying the
CR postprocessing.

To test this hypothesis, we run the SS PEW for 20 outer iterations and after
each, we computed the ODG value. The results in Fig. 8.6 not only show that the
CR strategy raises the limit of the achievable ODG via SS PEW but also that similar
perceptual performance can be reached with significantly fewer iterations.
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Fig. 8.6: Average course of PEAQ ODG values for SS PEW followed by CR through
iterations. Dotted lines indicate the best ODG score achievable by the pure SS PEW
(after 20 iterations with 𝜆 = 10−4).

8.4 Results and discussion
In this section, we evaluate the results of the BR and CR approaches in more detail,
and compare the results with the top-performing methods from Chapters 6 and 7.

The overall PEAQ ODG and PEMO-Q ODG results are illustrated in Figs. 8.7,
and 8.8, respectively. The individual declipping algorithms are distinguished using
different bar colors. Within a single bar, the lightest shade represents ODG values
obtained by the originally declipped, inconsistent signals. The medium shade marks
the results of the BR strategy, and the darkest shade corresponds to CR. Addition-
ally, the black dotted lines represent the average ODG value of the clipped signals,
and the black dashed lines indicate the best ODG result obtained by the methods
from the previous chapters—mostly the results of nonnegative matrix factorization
(NMF) and the analysis variant of parabola-weighted ℓ1-minimization (ℓ1 CP wp).

The PEAQ results in Fig. 8.7 suggest a significant improvement of the recon-
struction quality when the crossfaded replacement is applied, especially at medium
and high input SDRs. The CR method always performs better or at least on par
with the basic replacement, which is also demonstrated in Fig. 8.5. However, in some
cases of very harsh clipping (input SDR of 1 and 3 dB), both replacement strategies
can decrease the ODG score of the declipped signal for some of the methods (mostly
CSL1-based algorithms).

The PEMO-Q results in Fig. 8.8 are a bit more conservative in comparison to
PEAQ. For lower input SDRs up to 7 dB, the PEMO-Q metric seems to prefer more
the inconsistent solution. Nevertheless, the CR technique dominates for high input
SDRs and usually provides better results than BR.
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SS PEW even with applied CR strategy did not outperform the NMF. However,
the ODG difference between the two was significantly reduced after the application
of CR, with a much lower computational cost.

C-OMP rec CSL1 rec PCSL1 rec PWCSL1 rec SS EW rec SS PEW rec DL rec
C-OMP BR CSL1 BR PCSL1 BR PWCSL1 BR SS EW BR SS PEW BR DL BR
C-OMP CR CSL1 CR PCSL1 CR PWCSL1 CR SS EW CR SS PEW CR DL CR
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Fig. 8.7: Average PEAQ ODG values for inconsistent restoration (lightest color
shade), BR strategy (medium shade) and CR strategy (darkest shade). Each group
of bars is crossed by a horizontal dotted line; these mark the ODGs of the clipped
signals. The dashed lines are present to indicate the best possible ODG results
achieved by a method from Chapters 6 and 7.
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Fig. 8.8: Average PEMO-Q ODG values for inconsistent restoration (lightest color
shade), BR strategy (medium shade) and CR strategy (darkest shade).
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9 Audio dequantization algorithms
This chapter aims at adopting selected sparsity-based methods previously introduced
for audio declipping to the problem of audio dequantization. The relation between
the declipping and dequantization problems is described in Sec. 2.6, which shows that
the feasible solution sets for both problems are convex multidimensional intervals.
As a consequence, it is possible to use the same algorithms for audio dequantization
as for declipping, and the only difference is in the projection step.

Recall that the set of feasible solutions for audio dequantization can be defined
in the time domain as

Γ =
{︁
x̃ ∈ R𝑁 | ‖x̃ − yq‖∞ ≤ Δ/2

}︁
, (9.1)

where yq ∈ R𝑁 represents the quantized signal and Δ is the quantization step.
Similarly to declipping, it is convenient to define the feasible set in the transformed
domain in some cases, such as

Γ* =
{︁
z̃ ∈ C𝑃 | ‖𝐷z̃ − yq‖∞ ≤ Δ/2

}︁
. (9.2)

First, the consistent ℓ1 minimization approach to audio dequantization is utilized
and described in Sec. 9.1. Allowing some deviation from the feasible set Γ leads to
an inconsistent approach, which is presented in Sec. 9.2. The next section, i.e.,
Sec. 9.3, is devoted to the SPADQ algorithms, which are consistent heuristic ℓ0-
approximation-based algorithms originally developed for audio declipping as the
SPADE algorithms. The mentioned dequantization algorithms were published in
[8, 11]. Finally, Sec. 9.4 presents the comparison of the methods in terms of the
restoration quality.

Similarly to the previous chapters, the linear operators 𝐴 : R𝑁 → C𝑃 and
𝐷 : C𝑃 → R𝑁 with 𝑁 ≤ 𝑃 , 𝐷 = 𝐴* are assumed to correspond to Parseval tight
frames. Specifically, the DGT and IDGT will be used as the analysis and synthesis
operators, respectively.

9.1 Consistent ℓ1 minimization
Using the unconstrained form of the consistent ℓ1 minimization, the synthesis and
analysis variants of the optimization problem read

arg min
z

‖z‖1 + 𝜄Γ*(z), (9.3a)

arg min
x

‖𝐴x‖1 + 𝜄Γ(x). (9.3b)

Notice that the formulation is equivalent to the formulation of audio declipping in
(6.4) and (6.16) for the synthesis and analysis case, respectively.
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The solution to the synthesis variant (9.3a) can be found via the Douglas–
Rachford algorithm, which is summarized in Alg. 6. The two principal steps are
the soft thresholding (1.21) and the projection onto Γ*, which is computed accord-
ing to (6.5). However, the inner projection projΓ is for the dequantization case
expressed as

(︂
projΓ(x)

)︂
𝑛

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥𝑛 if |𝑥𝑛 − (𝑦q)𝑛| < Δ

2 ,

(𝑦q)𝑛 + Δ
2 if 𝑥𝑛 − (𝑦q)𝑛 > Δ

2 ,

(𝑦q)𝑛 − Δ
2 if 𝑥𝑛 − (𝑦q)𝑛 < −Δ

2 .

(9.4)

The analysis variant of the problem (9.3b) is solved using the Chambolle–Pock
algorithm, which is presented in Alg. 8. The only difference from the declipping
version is in the projection, which is now computed according to (9.4).

9.2 Inconsistent ℓ1 minimization
The approach described in the previous section requires total consistency with the
set of feasible solutions Γ, thus re-quantizing the restored signal yields the same
signal yq. However, it is possible to relax the strict constraint of the set of feasible
solutions Γ and penalize the distance from Γ. Such an approach may yield a sparser
solution while not being too far from the feasible set.

The synthesis and analysis formulations of the inconsistent ℓ1 minimization prob-
lems read

arg min
z

𝜆‖z‖1 + 1
2 𝑑2

Γ*(z), (9.5a)

arg min
x

𝜆‖𝐴x‖1 + 1
2 𝑑2

Γ(x), (9.5b)

where 𝑑𝐶(·) denotes the distance function (see definition (1.19)), and 𝜆 > 0 controls
the trade-off between the sparsity and the consistency of the solution. Note that
using the distance function 𝑑𝐶(·) we obtain basically the same penalization as in
the inconsistent minimization problem (6.28) for audio declipping introduced by
Siedenburg et al. [15], where the hinge function (defined in (6.29)) was used to
penalize the inconsistency in clipped parts.

Synthesis variant

Since the distance function from the feasible set Γ is differentiable, the synthesis
variant of the dequantization problem (9.5a) can be solved via FISTA (see Sec. 1.5.3,
Alg. 2), where 𝑓 represents 𝜆‖ · ‖1 and 𝑔 is the distance function 1

2𝑑2
Γ* . The FISTA

algorithm solving (9.5a) is summarized in Alg. 16.
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Algorithm 16: FISTA solving (9.5a)

Input: 𝐷, yq ∈ R𝑁 , Γ, 𝜆 > 0
Parameters: 𝛽 = ‖𝐷𝐷*‖
Initialization: z(0) ∈ C𝑃 , 𝑡(0) = 1
for 𝑖 = 0, 1, . . . do

ẑ(𝑖+1) = soft𝜆/𝛽

(︁
z(𝑖) − 1

𝛽
𝐷*(𝐷z(𝑖) − projΓ(𝐷z(𝑖)))

)︁
𝑡(𝑖+1) =

(︂
1 +

√︁
1 + 4(𝑡(𝑖))2

)︂
/ 2

z(𝑖+1) = ẑ(𝑖+1) + 𝑡(𝑖)−1
𝑡(𝑖+1)

(︁
ẑ(𝑖+1) − ẑ(𝑖)

)︁
return z(𝑖+1)

The two main steps are the soft thresholding operator as the proximal operator
of the ℓ1 norm (see definition (1.21)) and gradient of the distance function, which is
computed according to

∇1
2𝑑2

𝐶(x) = x − proj𝐶(x). (9.6)

Since 𝐷 is Parseval tight frame, the Lipschitz constant 𝛽 is equal to one.
An alternative approach is to utilize the proximal operator of the distance

function instead of its gradient, leading to the Douglas–Rachford algorithm (see
Sec. 1.5.2, Alg. 1). The proximal operator of the distance function 𝑑𝐶 is a convex
combination of a point and its projection onto 𝐶, which is computed according to
Eq. (1.20). The resulting Douglas–Rachford algorithm is described in Alg. 17.

Algorithm 17: Douglas–Rachford algorithm solving (9.5a)

Input: 𝐷, yq ∈ R𝑁 , Γ, 𝜆 > 0
Parameters: 𝛾 > 0
Initialization: z(0) ∈ C𝑃

for 𝑖 = 0, 1, . . . do
z̃(𝑖) = 1

𝛾+1(𝛾 projΓ*(z(𝑖)) + z(𝑖))
z(𝑖+1) = z(𝑖) + soft𝛾𝜆(2z̃(𝑖) − z(𝑖)) − z̃(𝑖)

return z̃(𝑖)

Analysis variant

In the analysis case of the dequantization problem (9.5b), the situation is similar
to the consistent approach, and the problem can be solved using the Chambolle–
Pock algorithm, where 𝑓 is the distance function 1

2𝑑2
Γ and 𝑔 represents 𝜆‖𝐴 · ‖1.

Note that the clip operator is the result of the Fenchel–Rockafellar conjugate of the
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soft thresholding, and the update of x uses the proximal operator of the distance
function presented in (1.20). The resulting algorithm is displayed in Alg. 18.

Algorithm 18: Chambolle–Pock algorithm solving (9.5b)

Input: 𝐴, yq ∈ R𝑁 , Γ, 𝜆 > 0
Parameters: 𝜁, 𝜎 > 0, 𝜁𝜎‖𝐴‖2 < 1, 𝜌 ∈ [0, 1]
Initialization: x(0) ∈ R𝑁 , x̄(0) = x(0), z(0) ∈ C𝑃

for 𝑖 = 0, 1, . . . do
z(𝑖+1) = clip𝜆(z(𝑖) + 𝜎𝐴x̄(𝑖))
u(𝑖+1) = x(𝑖) − 𝜁𝐷z(𝑖+1) % auxiliary
x(𝑖+1) = 1

𝜁+1

(︁
𝜁 projΓ(u(𝑖+1)) + u(𝑖+1)

)︁
x̄(𝑖+1) = x(𝑖+1) + 𝜌(x(𝑖+1) − x(𝑖))

return x̄(𝑖+1)

Apart from the “traditional” approach using the Chambolle–Pock algorithm,
two alternatives are proposed to tackle the problem (9.5b) by means of another
approximation. First, the Douglas–Rachford algorithm is applied to the problem.
The proximal operator of the distance function can again be taken from (1.20).
However, the proximal operator of 𝛼‖𝐴 · ‖1 = 𝛼‖ · ‖1 ∘ 𝐴 is problematic. If the
involved linear operator were the synthesis, the same composition rule could be
followed as in the case of the projection (6.5) onto Γ*. For 𝐴 being the analysis, no
such rule can be applied, though. Nevertheless, [135] shows that an approximation
of such a problem can be done using the so-called approximal operator, which turned
out to be very successful in the case of audio inpainting. The respective approximal
operator takes form

approx𝛼‖·‖1∘𝐴(x) = 𝐴*soft𝛼(𝐴x). (9.7)

Substituting the proximal operator of the distance function in Alg. 17 with the
approximal operator from (9.7) leads to Alg. 19.

Algorithm 19: Douglas–Rachford algorithm approximating (9.5b)

Input: 𝐴, yq ∈ R𝑁 , Γ, 𝜆 > 0
Parameters: 𝛾 > 0
Initialization: u(0) ∈ R𝑁

for 𝑖 = 0, 1, . . . do
x(𝑖) = 1

𝛾+1(𝛾 projΓ(u(𝑖)) + u(𝑖))
u(𝑖+1) = u(𝑖) + 𝐴*soft𝛾𝜆

(︁
𝐴(2x(𝑖) − u(𝑖))

)︁
− x(𝑖)

return x(𝑖)

117



As the second alternative, the FISTA can also be used for the approximation of
(9.5b) since the distance function 𝑑Γ is differentiable (see Eq. (9.6)) and the proximal
operator of ‖𝐴 · ‖1 can be substituted with the approximal operator, as was shown
above. The resulting FISTA algorithm with the applied approximal operator is
shown in Alg. 20.

Algorithm 20: FISTA approximating (9.5b)

Input: 𝐴, yq ∈ R𝑁 , Γ, 𝜆 > 0
Parameters: 𝛽 = ‖𝐴𝐴*‖
Initialization: u(0) ∈ R𝑁 , 𝑡(0) = 1
for 𝑖 = 0, 1, . . . do

x(𝑖+1) = 𝐴*soft𝜆/𝛽

(︁
𝐴(u(𝑖) − 1

𝛽
(u(𝑖) − projΓ(u(𝑖))))

)︁
𝑡(𝑖+1) =

(︂
1 +

√︁
1 + 4(𝑡(𝑖))2

)︂
/ 2

u(𝑖+1) = x(𝑖+1) + 𝑡(𝑖)−1
𝑡(𝑖+1)

(︁
x(𝑖+1) − x(𝑖)

)︁
return u(𝑖+1)

9.3 Consistent ℓ0 approximation
The last presented option to approach dequantization is the heuristic nonconvex
ℓ0 approximation, which is a natural adaptation of the Sparse Audio Declipper
(SPADE) [16, 4] or Inpainter (SPAIN) [6]. Following the name convention of the
algorithms, this approach is referred to as SPADQ (Sparse Audio Dequantizer).

Based on [16, 4], there are three possible problem formulations:

arg min
w,z

‖z‖0 s.t. 𝐷w ∈ Γ and ‖w − z‖2 ≤ 𝜀, (9.8a)

arg min
x,z

‖z‖0 s.t. x ∈ Γ and ‖x − 𝐷z‖2 ≤ 𝜀, (9.8b)

arg min
x,z

‖z‖0 s.t. x ∈ Γ and ‖𝐴x − z‖2 ≤ 𝜀. (9.8c)

These variants correspond to the synthesis variants S-SPADQ (problem (9.8a),
Alg. 14), S-SPADQ DP (problem (9.8b), Alg. 15), and the analysis variant A-SPADQ
(problem (9.8c), Alg. 13).

The principal steps of the algorithms are adaptive hard thresholding and the
projection onto the set of feasible solutions. This projection is the only differ-
ence between SPADE and SPADQ. It is computed according to (9.4), however, the
SPADQ algorithms process the signal frame-by-frame and each frame is multiplied
by a window function to suppress the spectral sidelobes. Therefore, the projection
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must take into account not only the quantization levels and steps but also the win-
dow function used by multiplying the levels yq + Δ

2 and yq − Δ
2 elementwise with

the window.

9.4 Results and discussion
This section aims at evaluating the quality of the restoration obtained by the dequan-
tization algorithms presented in this chapter. Following the established methodology
from the previous sections, the experiment design and evaluation were performed in
line with the description in Chapter 5.

In the following bar graphs, the three presented optimization problems are dis-
played in different colors (consistent ℓ1 minimization in blue, inconsistent ℓ1 mini-
mization in orange, and consistent ℓ0 approximation in yellow). Moreover, synthesis
variants use lighter shades, and analysis variants use darker color shades. Different
algorithms are distinguished via hatching (CP and S-SPADQ DP use gray hatching,
and FISTA uses black hatching).

Similarly to the case of declipping, the performance of the algorithms is heavily
dependent on parameter fine-tuning. In the case of ℓ1 minimization, the ΔSDR
values tend to gain rapidly during the first couple of iterations but then drop and
stabilize at a lower value. This is explained by the fact that the ℓ1 norm of the
TF coefficients is minimized, while the time-domain samples are retained within the
consistent area. But when the ℓ1 norm of the coefficients is pushed too far towards
zero, the waveform samples are also affected, tending to incorrectly settle close to
the edge of the feasible quantization intervals. Thus, interrupting the convergence
at the SDR peak provides results with the most similar waveforms to the original
(in practice unknown) signal. Note that this behavior does not apply to the SPADQ
algorithms.

Waveform similarity does not necessarily imply perceptual quality. In the de-
quantization process, letting the algorithms fully converge yields significantly better
results in terms of perceptual metrics. Therefore, the following graphs present the
best achievable ΔSDR values obtained after approximately 100 iterations but the
perceptually motivated measures are computed from the fully converged results after
500 iterations.

The best achievable ΔSDR values presented in Fig. 9.1 suggest no clear winner
among the tested methods. The SPADQ algorithms perform well for word lengths
of 4–7 bps, but they are outperformed by the convex methods for other tested word
lengths. Surprisingly, the best performing SPADQ was the original synthesis variant
(S-SPADQ), despite being the worst in declipping (see Fig. 6.7).
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In the case of consistent ℓ1 minimization, it is clear that except for the 2 bps
case, the analysis variant using the Chambolle–Pock algorithm outperforms the
synthesis variant computed via the Douglas–Rachford algorithm. The results of the
inconsistent problem formulation also indicate the predominance of analysis-based
formulations. This behavior can also be observed in the majority of algorithms for
audio declipping, however, plain consistent ℓ1 minimization marginally favors the
synthesis formulation (see Fig. 6.8).

The effect of inexact computation of the thresholding step using the approxi-
mal operator (9.7) turns out to have only a negligible influence, as in the case of
inpainting [135]. Finally, algorithms exploiting the proximal operator of the differ-
entiable function (DR and CP) tend to outperform the FISTA algorithm based on
the computation of the gradient.

Since we are interested mostly in the resulting perceptual audio quality, we
present also the results of perceptually motivated measures—PEAQ in Fig. 9.2 and
PEMO-Q in Fig. 9.3. In contrast to declipping, where PEAQ is able to produce
reasonable ODG values even though it is originally designed for evaluating audio
compression standards, it failed in evaluating the dequantization results. This can
be observed in several examples.

First of all, the PEAQ ODG values of the quantized signals (bars of gray color)
do not correspond to the nature of the quantization process. The best ODG value
was obtained for the bit depth of 2 bps, which actually represents the worst audio
quality because the fewer quantization levels are utilized, the greater the introduced
distortion is. Also, the restored signals from the 2 bps signal are ranked unexpectedly
high in comparison with other tested word lengths and the obtained ODG results
actually do not correspond either to ΔSDR or informal listening tests. PEAQ also
suggests that for word lengths of 2 to 6 bps, the dequantization methods degrade
the resulting audio signal quality, which also contradicts the informal listening test
experience.

PEMO-Q, on the other hand, does not suffer from the aforementioned shortcom-
ings of PEAQ, and similarly to declipping, the obtained results correspond to the
ΔSDR results to some extent. Some differences between the PEMO-Q ODG and
ΔSDR values can be found in the SPADQ algorithms, where the PEMO-Q slightly
prefers the analysis variant. Overall, it can be observed that for 𝑤 > 4 bps, all
methods improve the perceptual quality.
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Fig. 9.1: Average dequantization performance in terms of ΔSDR.
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Fig. 9.2: Average dequantization performance in terms of PEAQ ODG.
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Fig. 9.3: Average dequantization performance in terms of PEMO-Q ODG.
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Conclusions and perspectives
This Thesis aimed at the restoration of audio signals corrupted by nonlinear dis-
tortions. The focus was primarily devoted to the task of restoring clipped signals,
referred to as audio declipping. Nevertheless, a part of the Thesis also dealt with
the problem of audio dequantization, which aims at estimating the original signal
from its quantized observation.

After Chapter 1, which presented the notation used and provided necessary theo-
retical aspects of the sparsity-based signal processing and psychoacoustic principles,
Chapter 2 described in detail the phenomena of clipping and quantization and for-
mally defined the task of declipping and dequantization. It also showed that both
tasks are very similar problems and, therefore, the same methodology can be used
to solve them.

An overview of published audio restoration methods concerning either clipping
or quantization was given in Chapter 3. The presented methods were divided into
several sections according to the solved problem and selected approach, such as
various approaches to audio declipping, sparsity-based audio declipping, machine
learning-based speech declipping, audio soft declipping, and audio dequantization.
The final part of each section also contained a categorization of the methods ac-
cording to various criteria, such as modeling assumption, solution consistency, and
optimization algorithm. To the best of our knowledge, such an extensive overview
in the field of audio declipping and dequantization is the first of its kind.

Before the actual introduction and comparison of the restoration algorithms,
Chapter 5 described the methodology of the experiments in terms of the audio
dataset used, modeling of the signal corruption by clipping and quantization, and
evaluation of the results. Tests conducted to compare the influence of the DGT
window size suggested that better declipping performance in terms of ΔSDR is ob-
tained using longer windows (up to 32,768 samples, i.e., approximately 743 ms)
than was used in most of the previously published research papers. However, the
length of the window goes hand in hand with the computational complexity of the
algorithms. Therefore, as a compromise between the restoration quality and com-
putational complexity, we selected the window size of 8,192 samples corresponding
to ca 186 ms for all experiments performed within the Thesis.

Chapter 6 treated in more detail various sparsity-based audio declipping algo-
rithms. First, we formulated the ℓ1-relaxed declipping problem in both the synthesis
and analysis variants. The synthesis variant was first solved via the Condat–Vũ al-
gorithm, which computed the projections on all three sets 𝑅, 𝐻, and 𝐿 separately.
Later, the explicit projector onto the whole set of feasible solutions was developed,
and thus it was possible to use a simpler and faster Douglas–Rachford algorithm.
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The analysis variant was solved using the Chambolle–Pock algorithm. Apart from
the plain ℓ1-minimization, we also introduced reweighting of the coefficients to fur-
ther enhance the sparsity of the solution. It turned out that reweighting significantly
improves the results in terms of SDR, especially in the analysis variant. However,
the effect was completely reversed in terms of ODG, which suggested that coefficient
reweighting is not beneficial for humanocentric audio declipping. Inspired by the
promising results of the work by Defraene et al. [101], we implemented the Condat–
Vũ algorithm to solve the 𝑅-inconsistent ℓ1 minimization-based problem proposed in
[101]. Nevertheless, this inconsistency in the reliable part brought no improvement
over the consistent variants, and according to psychoacoustically inspired measures,
this algorithm lags significantly behind its consistent counterparts. Furthermore,
we focused on the ISTA-type declipping algorithm utilizing Social Sparsity. We
used the implementation kindly provided by M. Kowalski and slightly accelerated
its convergence. The results confirmed those from the original paper [15] that using
Persistent Empirical Wiener produces superior restoration quality. The SS PEW al-
gorithm achieved the best results in terms of SDR and performed very well in terms
of PEAQ and PEMO-Q. Finally, we examined the SPADE algorithms originally pre-
sented in [16]. We reimplemented the algorithms and enhanced their performance
by altering the hard thresholding step to respect the conjugate structure of DFT and
by utilizing the developed projection lemma, we managed to significantly accelerate
the synthesis variant S-SPADE, which, however, turned out not to fully respect the
ADMM scheme. Therefore, we developed a new synthesis variant of the algorithm,
which significantly outperformed the original S-SPADE. Both the analysis and the
new synthesis variants of the algorithm performed well in terms of all evaluation
metrics, however, the A-SPADE tended to achieve marginally better results.

In Chapter 7, we investigated the possibilities of incorporating psychoacoustic
information into audio declipping. The a priori information entered the optimiza-
tion problem in form of weights, which were used to encourage or suppress certain
TF coefficients. While weights inspired by the absolute threshold of hearing did not
bring an expected improvement of the perceptual quality, the weights obtained from
the global masking threshold (specifically a slightly modified MPEG-1 Psychoacous-
tic Model 1) improved the declipping results up to 0.5 on the PEAQ ODG scale and
even slightly more on the PEMO-Q ODG scale. However, the best overall results
by far were obtained by the parabola-based weights, which aim at suppressing the
higher harmonics introduced by clipping while the lower frequencies are preserved.
Such an option brought significant improvement of the restoration quality in all
used evaluation metrics (up to almost 2 on the PEAQ ODG scale and 1.5 on the
PEMO-Q scale) with no additional computational cost over the nonweighted variant.
The results obtained by the parabola-weighted analysis variant of the ℓ1-relaxation
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problem solved via the Chambolle–Pock algorithm were comparable with the top-
performing audio declipping methods such as SS PEW and NMF while being ca 6×
and 181× faster, respectively.

Chapter 8 dealt with the possibilities of improving the results obtained by the
declipping methods inconsistent in the reliable part. A basic method where all
the samples in reliable positions are replaced with the samples from the clipped
observation was introduced and the perceptual effects of such a replacement were
studied. Even though most of the inconsistent declipping methods benefited from
such basic replacement, at the same time, a major disadvantage consisting in the risk
of creating sharp transitions on the borders of the replaced segments was revealed.
To leverage the knowledge of the reliable samples while avoiding the sharp edges at
the transitions, two other replacement methods were proposed—one based on audio
inpainting and the other on crossfading. The latter turned out to be successful in
suppressing the sharp transitions and systematically performed better or at least
on par with the basic replacement. Apart from the resulting audio quality, it was
also shown that applying the crossfaded replacement method during the declipping
algorithm can be used to obtain perceptually satisfying results in fewer iterations.

Finally, in Chapter 9 we tackled the problem of audio dequantization and showed
that audio declipping methods can be easily adapted to solve dequantization by al-
tering their projection step. However, despite the close similarity between declipping
and dequantization, it does not hold true that methods successful in declipping per-
form well in dequantization. For instance, the SPADE algorithms for declipping
outperformed most of the ℓ1 minimization-based approaches but the SPADQ algo-
rithms did not fulfill the expectations and turned out to perform mostly on par or
even slightly worse than plain ℓ1 minimization approaches in terms of perceptually
motivated measures. The results also pointed out the predominance of analysis
variants of the optimization problems, while no significant difference between the
consistent methods and methods allowing a deviation from the feasible set was found.
An interesting observation was that algorithms exploiting the proximal operator of
the differentiable function tend to outperform the gradient-based methods.

To both support the spirit of reproducible research and to stimulate future re-
search in this area, the source codes of the methods described in this Thesis were
made publicly available. The MATLAB implementations of the presented audio
declipping algorithms including methods aiming at replacing reliable samples are
available at the following GitHub repository:

https://github.com/rajmic/declipping2020_codes

and audio dequantization

https://github.com/zawi01/audio_dequantization.
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For audio declipping, a supplementary web page was created. It contains a more
detailed comparison of the audio declipping methods, individual results for each au-
dio excerpt and clipping level, and interactive table of the results with the possibility
to listen to the declipped excerpts. This web page is available at:

https://rajmic.github.io/declipping2020.

To select the most suitable declipping algorithm facing a real-world restoration
task, it is necessary to consider several criteria. Some algorithms tend to perform
better at low clipping levels, while others perform better at high clipping levels. The
choice of an algorithm thus depends on the input data and the possible requirement
of the solution consistency. Nevertheless, the methods based on social shrinkage,
nonnegative matrix factorization, ℓ1 minimization with coefficients weighting, and
SPADE algorithms yield results that make them preferred choices. Depending on
the application, the computational complexity of the algorithms can be a decisive
selection criterion. From this point of view, parabola-weighted ℓ1 CP, and SPADE
are attractive. Very good restoration quality with slightly higher computational
complexity represents the FISTA exploiting social sparsity, which can be further
improved (or accelerated) by applying the crossfaded replacement strategy. If very
high computational time is not an issue, then NMF seems to provide the best quality
in terms of perceptual metrics.

Following the work presented in this Thesis, we now foresee some ideas and
possible directions of further research in the field. A possible way to improve the
results is to combine successful strategies of the various algorithms discussed in this
Thesis. For instance, the social sparsity regularizer, the parabola-based weights,
or the dictionary learning approach could be combined with SPADE or other al-
gorithms. Since the analysis variant of the optimization problem turned out to
perform slightly better, the problem solved by Social sparsity algorithm could be re-
worked into the analysis form. For audio dequantization, other successful declipping
algorithms could be applied, for example, the Social sparsity algorithm.

Even though there is still room for improvement, it seems that purely sparsity-
based methods are approaching their limits. In other fields of signal processing like
computer vision, speech recognition, audio analysis, and many more, it is possible to
notice the success of supervised techniques, especially deep learning-based methods.
As mentioned in Chapter 3, recent deep learning approaches to speech declipping
[117, 118, 119, 120] and audio dequantization [82] have shown promising results, and
it seems that future research will follow this trend. A potential direction is also to
combine signal modeling and learning from data using the unrolling, or unfolding
approach based on the recent finding that the structure of proximal algorithms can
be unrolled into the form of artificial networks [136].
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Symbols and abbreviations

Symbols
𝑥, 𝑋 scalar

x vector

X matrix

𝑥𝑖 𝑖-th element of vector x

𝑥𝑖,𝑗 element of matrix X at 𝑖-th row and 𝑗-th column

x(𝑖) 𝑖-th iterate of vector x

‖x‖𝑝 ℓ𝑝-norm of vector x

R𝑁 ,R𝑁×𝑀 𝑁 or 𝑁 × 𝑀 dimensional real vector space

C𝑁 ,C𝑁×𝑀 𝑁 or 𝑁 × 𝑀 dimensional complex vector space

ℜ real part of a complex number

ℑ imaginary part of a complex number

�̄� complex conjugate of a complex number

X⊤ transpose of matrix X

X* Hermitian transpose of matrix X

X−1 inverse of matrix X

X+ pseudoinverse of matrix X

⌊𝑥⌋ floor function

x ⊙ y elementwise multiplication of vectors

⟨x, y⟩ scalar product

𝜄Γ indicator function of set Γ

𝑑Γ distance function from set Γ

ℒ𝜌 augmented Lagrangian with penalty parameter 𝜌

𝜃c clipping threshold

Δ quantization step
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Abbreviations
AAC Advanced Audio Coding

ADMM Alternating Direction Method of Multipliers

ADPCM Adaptive Differential Pulse Code Modulation

AR Adaptive Restart

AR Autoregression

A-SPADE Analysis Sparse Audio Declipper

A-SPADQ Analysis Sparse Audio Dequantizer

ATH Absolute Threshold of Hearing

BLSTM Bidirectional Long Short-Term Memory

BP Basis Pursuit

BR Basic Replacement

CBAR Constrained Blind Amplitude Reconstruction

CCD Charge-Coupled Device

CD Compact Disc

CMOS Complementary Metal-Oxide-Semiconductor

C-OMP Constrained Orthogonal Matching Pursuit

CP Chambolle–Pock (algorithm)

CPU Central Processing Unit

CR Crossfaded Replacement

CSL1 Compressed Sensing ℓ1-minimization

CV Condat–Vũ (algorithm)

DAW Digital Audio Workstation

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DGT Discrete Gabor Transform

DL Dictionary Learning

139



DNN Deep Neural Networks

DPCM Differential Pulse Code Modulation

DR Douglas–Rachford (algorithm)

EBU European Broadcasting Union

ERB Equivalent Rectangular Bandwidth

EW Empirical Wiener

FFT Fast Fourier Transform

FISTA Fast Iterative Shrinkage/Thresholding Algorithm

FLAC Free Lossless Audio Codec

FSE Frequency Selective Extrapolation

GD Gradient Descent

GEM Generalized Expectation-Maximization

GMT Global Masking Threshold

IDGT Inverse Discrete Gabor Transform

IHT Iterative Hard Thresholding

IPMS Iterative Partial Matrix Shrinkage

IRISA Institut de Recherche en Informatique et Systèmes Aléatoires

IRLS Iterative Reweighted Least Squares

IR Inpainted Replacement

ISTA Iterative Shrinkage/Thresholding Algorithm

ITU-R International Telecommunication Union Radiocommunication Sector

JPEG Joint Photographic Experts Group

KL Kullback–Leibler

LARS Least Angle Regression

LASSO Least Absolute Shrinkage and Selection Operator

LPC Linear Predictive Coding

LPCM Linear Pulse-Code Modulation
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LS Least Squares

LSD Log-Spectral Distance

MCMC Markov Chain Monte Carlo

MFCC Mel-Frequency Cepstral Coefficients

ML Maximum Likelihood

MMV Multiple Measurement Vector

MOV Model Output Variables

MP Matching Pursuit

MPEG Moving Picture Experts Group

MRI Magnetic Resonance Imaging

MSE Mean Square Error

NMF Nonnegative Matrix Factorization

NN Neural Networks

NSAO Null-Space-based Alternating Optimization

NTF Nonnegative Tensor Factorization

ODG Objective Difference Grade

OFDM Orthogonal Frequency-Division Multiplexing

OMP Orthogonal Matching Pursuit

PC Personal Computer

PCM Pulse Code Modulation

PCSL1 Perceptual Compressed Sensing ℓ1-minimization

PDF Probability Density Function

PEAQ Perceptual Evaluation of Audio Quality

PEMO-Q Perception Model Quality Assessment

PEW Persistent Empirical Wiener

PSD Power Spectral Density

PSM Perceptual Similarity Measure
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PWCSL1 Parabola-Weighted Compressed Sensing ℓ1-minimization

PWM Pulse-Width Modulation

QMF Quadrature Mirror Filter

RAM Random Access Memory

RBAR Regularized Blind Amplitude Reconstruction

Rℓ1CC Reweighted ℓ1-minimization with Clipping Constraints

RVP Recursive Vector Projection

SD Semidefinite Programming

SDR Signal-to-Distortion Ratio

SNR Signal-to-Noise Ratio

SPADE Sparse Audio Declipper

SPADQ Sparse Audio Dequantizer

SPAIN Sparse Audio Inpainter

SPL Sound Pressure Level

SQAM Sound Quality Assessment Material

SQNR Signal-to-Quantization Noise Ratio

SS Social Sparsity

S-SPADE Synthesis Sparse Audio Declipper

S-SPADQ Synthesis Sparse Audio Dequantizer

STFT Short Time Fourier Transform

TF Time-Frequency

TPCC Trivial Pursuit with Clipping Constraints

TSP Telecommunications & Signal Processing

TVAR Time-Varying Autoregression

WAV Waveform Audio File Format

WGL Window Group-LASSO
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Fig. A.1: Waveforms of audio excerpts from the testing dataset.
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Fig. A.2: Spectrograms of audio excerpts from the testing dateset, part 1.
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Fig. A.3: Spectrograms of audio excerpts from the testing dataset, part 2.
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