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The paper presents a detailed analysis of algorithms used for the forward and the inverse
discrete wavelet transform (DWT) of finite-length signals. The paper provides answers
to questions such as “how many wavelet coefficients are computed from the signal at a

given depth of the decomposition” or conversely, “how many signal samples are needed to
compute a single wavelet coefficient at a given depth of the decomposition” or “how many
coefficients at a given depth are influenced by the selected type of boundary treatment”
or “how many samples of the input signal simultaneously influence two neighbouring

wavelet coefficients at a given depth of the decomposition”. As a byproduct, the rigorous
analysis of the algorithms gives details needed for the implementation. The paper is
accompanied by several Matlab functions.
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1. Introduction

In the paper, a detailed analysis of the Discrete-time Wavelet Transform (DWT) is

presented. It consists of the description of the algorithms for computing the forward

and the inverse transforms, including details that are useful for implementation,

and, in particular, it contains a comprehensive analysis of the properties of the

algorithms with a number of implications. The reader can find answers to questions

such as

• How many wavelet coefficients are computed from the signal at different

depths of decomposition?

• How many signal samples are needed to compute one single wavelet coeffi-

cient at the defined depth of decomposition?
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• How many coefficients at a given depth of decomposition are affected by

the choice of the type of the boundary treatment?

• How many signal samples simultaneously influence two neighbouring

wavelet coefficients?

• Which particular wavelet coefficients are affected by the choice of the

boundary treatment method?

Answers to the listed (and other related) questions are presented in the form

of theorems and proofs. The results are depicted and commented in a number of

graphs, examples, and tables. Several Matlab functions come with the paper to

implement and demonstrate the theoretical findings. The reader is expected to be

familiar with the basics of the wavelet signal decomposition 28,20,8,4.

Although the intent of the article could seem theoretical, some of the results

can be readily transferred into practice. Consider, for example, the case when a

real-time algorithm based on wavelet decomposition has to be implemented on a

low level, e.g. in a microcontroller. In such a case the programmer definitely needs

to know an exact count of the number of coefficients to store, etc. 24,13

Only finite-length discrete-time signals are considered throughout the text. The

coefficients of the wavelet filters used are assumed to be known; however, in most

cases, their particular values will not be used, as long as the information about

the filter length (i.e. the number of filter taps) is absolutely sufficient. The inverse

transform will be denoted iDWT. We narrow our considerations to the dyadic DWT

case only, which is the case when all the up- and downsample factors are equal to

two.

In Section 1.1, most of the symbols used are established. Section 2 deals with the

forward DWT. It consists of part 2.1 dealing with types of treatment used for signal

extension at the boundaries (which is necessary for the finite-length, non-periodic

signals), and of parts 2.2 and 2.3, which deal with two alternative formulations of

the DWT computation: the first one being in the form of a matrix multiplication,

the second using the recursive filtering “pyramid” (Mallat’s algorithm). Section

2.4 is the most original and the most contributive part of the paper, containing a

thorough analysis of the forward DWT algorithm. This part answers the questions

stated above, among other things. Section 3 then brings a detailed analysis of the

inverse iDWT in a similar manner. The last part is dedicated to the description of

Matlab functions.

1.1. Symbols and Assumptions

The vectors are considered as rows, unless stated otherwise. Indexing the vector

elements is assumed to start with the number one, i.e. x = [x1, . . . , xn]. The symbol

len(x) denotes the length of vector x, i.e. the number of its elements, for example

len([x1, . . . , xn]) = n. When talking of the effective length, possible zeros at the

borders are excluded and the effective length can thus be shorter. Formally, this is

defined by (max{k |xk 6= 0} −min{k |xk 6= 0}+ 1) for nonzero vectors. Rounding
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to the nearest integer will often be employed; ⌊x⌋ represents rounding towards the

negative infinity: ⌊x⌋ = max{k | k ∈ Z, k ≤ x}. By analogy, ⌈x⌉ rounds x towards

the positive infinity.

In the context of the DWT algorithm, the following symbols need to be estab-

lished in particular:

• s ∈ N represents the signal length,

• J ∈ N represents the depth of the decomposition,

• m ∈ N represents the length of the wavelet filters.

1.1.1. Wavelet Filters

Only the finite impulse response (FIR) filters are considered. Hence m < ∞. The

decomposition low-pass filter is denoted by h, the high-pass filter by g, the recon-

structing low-pass filter by h̃, and the high-pass filter by g̃.

The filters can be of both odd and even length. (Satisfying m ≥ 2 at the same

time, to make the filtering meaningful.) The so-called quadrature mirror filters,

which are always orthogonal, have all four identical lengths. The biorthogonal fil-

ters nevertheless can have different effective lengths. According to 27, one of the

following cases is true (both for the decomposition and the reconstruction stages):

(1) Both filters have odd lengths which differ by an odd multiple of two.

(2) Both filters have even lengths, being either equal or differing by an even

multiple of two.

(3) One filter is of odd length, the other is of even length, and the zeros of both

the filters are located at the unit circle.

To work with filters of different lengths consistently, the shorter one is zero-

padded to the length of the longer one. Zeros, of course, do not affect the values

at the output of the filter. (The “lifting scheme” 3,14 which would make use of the

shorter length, is not exploited.) The rules for padding the shorter filter at both its

ends follow immediately and they correspond with the Matlab Wavelet Toolbox 9

behavior.

In the following text only the first two of the cases mentioned are considered

— case 3 is of no practical interest 27. Two nonnegative variables l0 and r0 are

defined, denoting the number of zeros to be added from the left and the right end,

respectively. Denoting the effective length of the shorter filter by m, the following

naturally holds: m = l0 +m+ r0.

In case 1 (i.e. odd m,m) the extensions are chosen so that l0 = r0 − 2, leading

to

l0 =
m−m

2
− 1, r0 =

m−m

2
+ 1. (1.1)

In case 2 (i.e. even m,m) the extensions l0, r0 are equal, which induces

l0 = r0 =
m−m

2
. (1.2)
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Whenever a particular wavelet filter is mentioned in the paper, its abbreviated

labeling is taken over from 9.

Example 1.1. The biorthogonal filter bank bior2.2 comprises the decomposing

low-pass filter h = [h1, . . . , h5] of length m = len(h) = 5 and the high-pass filter

g = [g1, g2, g3] of effective length m = len(g) = 3. This corresponds to case 1, and

according to (1.1), the extensions to be used are l0 = 0 a r0 = 2. Thus, the resultant

padded high-pass filter is [g1, g2, g3, 0, 0].

Example 1.2. The biorthogonal filter bank bior1.5: the decomposing low-pass

filter h = [h1, . . . , h10] of length m = len(h) = 10, the high-pass filter g = [g1, g2] of

only the effective length m = len(g) = 2. Case 2 should be used now, and according

to (1.2), the final extensions are l0 = r0 = 4. Thus the padded filter takes the form

[0, 0, 0, 0, g1, g2, 0, 0, 0, 0].

From now on, h, g, h̃, and g̃ will denote filters already extended to have an

equal length m.

Remark 1.1. When filters of odd lengths are considered, there is one difference

between the Matlab Wavelet Toolbox 9 and the process just described. The Wavelet

Toolbox inserts an extra zero at the beginning of both the filters to make their

lengths be always even.

1.1.2. Discrete Linear Convolution

The convolution is the core of the DWT algorithm. The result of the discrete linear

convolution of two signals x = [x1, . . . , xs] and h = [h1, . . . , hm] is the vector y

composed of elements at indexes n ∈ {1, . . . , s + m − 1}, where the elements are

defined by the formula

yn =
m−1
∑

k=0

xn−kh1+k. (1.3)

Certain combinations of n and k in the formula push the index n − k outside the

support of x. Naturally, such values (whose count is m−1 at both ends) are assumed

to be zeros.

1.1.3. Parity

The parity of a number indicates whether the number is even or odd. For x ∈ Z,

par(x) =

{

0 for x even,

1 for x odd.
(1.4)

Figuratively, the parity of a vector will indicate the parity of its length.
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1.1.4. Downsampling and Upsampling

An important operation used within the DWT is the dyadic downsampling of a

vector, which means removing “every other sample” from it. Such an operator

will be denoted ε↓2, where ε indicates the variant of the downsampling: ε = 0 for

the so-called even type, when the removal starts with the first sample, and ε = 1

for the odd type. Their effect is best shown on examples: let x = [1, 2, 3, 4, 5] and

y = [1, 2, 3, 4, 5, 6] be vectors, then (0↓2)x = [2, 4], (1↓2)x = [1, 3, 5], (0↓2)y = [2, 4, 6],

(1↓2)y = [1, 3, 5].

Lemma 1.1. Given a vector of length d, the ε-downsampled result consists of

d

2
+

(

ε−
1

2

)

par(d) (1.5)

samples.

Proof. If d is even, par(d) = 0, then both variants of decimation ε = 0 and ε = 1

produce d/2 samples. If d is odd, the decimation clearly leaves
⌊

d
2

⌋

+ ε samples as

the result. Formula (1.5) connects both the results because

d

2
+

(

ε−
1

2

)

par(d) =

{

d
2 for d even
⌊

d
2

⌋

+ ε = d−1
2 + ε for d odd.

(1.6)

Similarly, the upsampling operator inserts zeros “between every two samples”

and is denoted ε↑2. Its action on vector z = [2, 4] results in (0↑2)z = [2, 0, 4], (1↑2)z =

[0, 2, 0, 4, 0]. Let us point out that in the case of ε = 1 zeros are appended both at

the beginning and at the end of the signal. The following clearly holds.

Lemma 1.2. The vector produced by ε-upsampling of a vector of length d has

2d− 1 + 2ε (1.7)

samples.

Remark 1.2. Due to the presence of the dyadic down- and upsampling in the

DWT algorithm, the powers of two will play the central role in the analysis.

Remark 1.3. For the same reason, the DWT is not a shift-invariant transform.

Actually, it is a 2J -shift-invariant transform, which means that shifting the signal by

2J samples results simply in a shift in the coefficient domain. The referred property

can sometimes cause problems in applications; when shift-invariance has to be kept,

the stationary wavelet transform (also called the undecimated DWT) 11 has to be

used. Its classical application for denoising is presented e.g. in 2.

At a certain stage of the article, our analysis will neglect the variant ε = 1. This,

however, not goes against the generality, since any ε can be mimicked by simply

shifting the signal before the transform is applied.
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1.1.5. Most important symbols and denotations

s . . . . . . . . . . . . . . . . . . . . . . length of the input signal

m . . . . . . . . . . . . . . . . . . . . . length of the wavelet filters

J , j . . . . . . . . . . . . . . . . . . . depth of decomposition, particular levels of decomposition,

j ≤ J

len(·). . . . . . . . . . . . . . . . . . length of a vector

par(·) . . . . . . . . . . . . . . . . . parity of the number, or parity of the length of a vector

⌊·⌋ , ⌈·⌉ . . . . . . . . . . . . . . . . nearest integer downwards, upwards

|A| . . . . . . . . . . . . . . . . . . . . number of elements in set A
ε↓2, ε↑2 . . . . . . . . . . . . . . . . dyadic down- and upsampling

g,h, g̃, h̃ . . . . . . . . . . . . . . wavelet filters: high-pass, low-pass decomposing, high-pass,

low-pass reconstructing

a(j), a
(j)
k . . . . . . . . . . . . . . . vector of the approximation wavelet coefficients at level j,

and its kth element

d(j), d
(j)
k . . . . . . . . . . . . . . . vector of the detail wavelet coefficients at level j; its kth

element

c(j), c
(j)
k . . . . . . . . . . . . . . . vector of wavelet coefficients at level j (no distinction what

kind); its kth element

ncoef(s,m, j, ε) . . . . . . . . number of coefficients produced by the DWT; the amount

is equal to both len(a(j)) and len(d(j))

ncoef(s,m, j) . . . . . . . . . . substitutes ncoef(s,m, j, 0)

n
∑

coef(s,m, J, ε) . . . . . . . . overall number of coefficients produced by the DWT

nsamp(q, j,m) . . . . . . . . . number of signal samples needed for the computation of q

subsequent wavelet coefficients

ran(k, j, u,m) . . . . . . . . . range of the influence of a single wavelet coefficient

nshift(k1, k2, j,m) . . . . . . time-shift in the signal domain for two given coefficients

nshared(k1, k2, j, u,m) . . number of coefficients at depth u that are shared by two

specified coefficients from level j

naffect(j,m) . . . . . . . . . . . number of coefficients affected by the choice of the method

of boundary treatment.

2. Forward Discrete Wavelet Transform (DWT)

The theory of wavelet transform admits cases when the finite-energy signal can be

of infinite length and, consequently, the number of wavelet coefficients can be also

(countably) infinite. By contrast, the signal is in practice usually localized on some

time interval. Moreover, most of the signals cannot be considered periodic as well.

Following these statements, the methods of signal boundary treatment are pre-

sented briefly in Section 2.1. Then in Section 2.2 the basic formulation of DWT

via matrix multiplication is introduced. Such a formulation is in fact not important

from the computational efficiency point of view but it helps to understand in depth

the mechanism of DWT, which is essential for Section 2.3 and mainly for Section

2.4, which encompasses the promised analysis.
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2.1. Treatment of Signal Boundaries

There is a question that immediately comes to mind when working with time-limited

signals: Since the fundamental part of DWT is convolution and since convolution

is known to exhibit “boundary artifacts”, how should one compute the wavelet

coefficients located “near the boundaries”?

Although it is not the main focus of this study, a summary of possible methods

is presented in this section, which answer the above question. Let us say in advance

that all of the approaches suffer from some shortcoming 20,9,22,1,5,26,16. In this

part of text we assume (without loss of generality) just a single level of the wavelet

decomposition J = 1.

(1) Using special border filters. In this case, special filters are constructed for

the signal samples in the neighbourhood of the borders. The signal is not

extended in any way.

(2) Assuming periodicity. The signal is considered to be a single period of an

infinite-length periodic signal. If, in addition, the signal length is even, then

the total number of coefficients produced at the first level of decomposition

is equal to the original number of samples.

(3) Defining samples outside of the original domain. The idea here is that the

samples beyond the signal domain are extrapolated using a more or less

suitable and/or a more or less computationally demanding method. It is

convenient to divide the possibilities into several groups:

(a) Symmetrization/Mirroring. The edge-samples are “mirrored”. Such an

approach brings “discontinuities” of the signals first difference. If sym-

metric filters (only the biorthogonal filters can be symmetric) are used,

it is possible to make the DWT representation non-redundant (for re-

dundancy/expansivity see below).

(b) Point-symmetric extension. Using point-symmetry one can get rid of

the discontinuity mentioned.

(c) Smooth extension using polynomials. The method tries to “guess” sam-

ples outside of the signal domain using a polynomial of a specified order

(kth order polynomial preserves the “continuity” of kth difference).

(d) Extending with zeros. This is the simplest method — the signal is

considered to be zero beyond its original borders.

(4) Using samples from the neighbouring segment. This approach is natural

when the signal to be processed is in fact a time-limited portion cut from a

longer signal. For example, in real-time speech processing the buffer holds

256 samples. This type of method reasonably uses samples directly from its

neighbour(s) to extend the borders.

In this sense, such a method could be considered a special case of group 3.

Nevertheless it is listed separately because in the case of the decomposition

depth being J > 1, the recursive nature of the DWT makes the necessary

extension length greater when compared with the other methods. Such a
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situation requires more detailed treatment and modification of DWT as can

be found in 15,10,12,14,18, for example.

(5) Cutting off. The goal of this naive approach is to keep the wavelet represen-

tation non-redundant. The DWT computation is performed using any of

the above methods and then the “border” coefficients are simply discarded.

Therefore the reconstruction cannot be exact near the borders any more.

Each of the stated methods suffers from at least one shortcoming from the following

list:

• the necessity of having special border filters (which is not effective algorith-

mically),

• the deviation from (bi)orthogonality of the transform,

• inexact reconstruction from the transform coefficients,

• redundancy (expansivity) of the wavelet representation, which means that

the wavelet representation of a signal of length s will have the total number

of coefficients slightly higher than s,

• bringing possible errors to the “other end” due to periodicity.

Hence, in choosing a method one always has to make a compromise.

We find the extension methods given under item 3 (and possibly 4) to be the

most natural and the most generally utilizable in practice; such methods have only

one drawback — expansivity. As mentioned in 3a, there exist special situations when

expansivity does not appear — this is typical of image processing with biorthogonal

filters, for example in JPEG2000 compression scheme, see 23,25. The expansivity

can also be avoided in cases 3d and 3c (k = 1) for particular signal lengths via

pre-processing near-border coefficients before the inverse transform 21. Because of

its universality, the analysis in Section 2.4 considers almost exclusively the generally

expansive case 3.

In the context of this part other questions might arise, hand in hand with each

other:

• What is the difference between the types of extension with respect to the

effect on the values of the wavelet coefficients?

• How many boundary coefficients are affected by the choice of the method?

• If these coefficients were altered, how many signal samples would be affected

after the reconstruction?

Answers to these questions can be found later in Sec. 2.4.5.

2.2. DWT as Matrix Multiplication

For convenience, both the signals and sets of coefficients will be treated as column

vectors in this section. The DWT of a signal of length s = 2J can be formulated

as a matrix multiplication 29,26 on the assumption of the periodic-type border

extension. This is in fact the same as if x was s-periodic.

Denoting x = [x1, . . . , xs]
⊤ the vector to be decomposed, it is possible to repre-
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sent it as a linear combination of “wavelet” vectors arranged as column vectors of

matrix W of size s × s; the weights in the linear combination are the elements of

y = [y1, . . . , ys]
⊤,

x = Wy. (2.1)

The columns of W form the basis in R
s, thus y represents the coordinates of x in

the basis, given by

W−1x = y, (2.2)

which corresponds to finding the coordinates x in the dual basis for y. In the

orthogonal case W⊤ = W−1 holds right, meaning that the original and the dual

bases are identical.

The DWT matrix for decomposition depth J = 1 can be written as

W−1 =

[

H1

G1

]

. (2.3)

Here the rows of H1 and G1 are constructed using vectors h = [h1, . . . , hm] and

g = [g1, . . . , gm], respectively, in a “circulant way”: each row is a copy of the previous

row except that it is shifted to the right by two positions (the shift comes from the

downsampling). The size of both the matrices is γj × 2γj , where γj = 2−js. The

construction of H1 is shown here:

Hj =













...
...

...
...

...
...

...

· · · hm hm−1 hm−2 · · · h1 0 0 · · ·

· · · 0 0 hm · · · h3 h2 h1 · · ·
...

...
...

...
...

...
...













, (2.4)

and Gj is built using g in a similar way.

The rows of the matrices contain time-reversed and shifted versions of the filters

(i.e. convolution, Sec. 1.1.2). If the filter length is m < sj , the remaining elements

of the matrix row are zeros, but, conversely, if m > sj , the first sj samples are used

to fill the row and the rest is cyclically folded so that the values are added to the

previous ones. The process of building the transform matrix is implemented in the

file dwtmatrix.m described in Sec. 4.

Example 2.1. Working with orthogonal filters h = [h1, h2, h3, h4] and g =

[g1, g2, g3, g4] (which may correspond to the Daubechies db2 wavelet, for example)
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and a signal of length s = 8, the decomposition matrix is of the form:

W−1 =



























h3 h2 h1 0 0 0 0 h4

0 h4 h3 h2 h1 0 0 0

0 0 0 h4 h3 h2 h1 0

h1 0 0 0 0 h4 h3 h2

g3 g2 g1 0 0 0 0 g4
0 g4 g3 g2 g1 0 0 0

0 0 0 g4 g3 g2 g1 0

g1 0 0 0 0 g4 g3 g2



























. (2.5)

Example 2.2. The decomposing matrix with biorthogonal filters h =

[h1, h2, h3, h4, h5] and g = [g1, g2, g3, 0, 0] (bior2.2 spline wavelet, for example)

and signal length s = 8 is

W−1 =



























h3 h2 h1 0 0 0 h5 h4

h5 h4 h3 h2 h1 0 0 0

0 0 h5 h4 h3 h2 h1 0

h1 0 0 0 h5 h4 h3 h2

g3 g2 g1 0 0 0 0 0

0 0 g3 g2 g1 0 0 0

0 0 0 0 g3 g2 g1 0

g1 0 0 0 0 0 g3 g2



























. (2.6)

For greater decomposition depths j = 1, 2, . . . , J , let the dual basis matrix be

denoted W−1
J . There are two ways how to construct it. The first one relies on the

cascade algorithm 7, the second one is more elegant and uses just matrix operations

as shown in (2.7), using (2.4) 26.

W−1
1 = [ H⊤

1 G⊤
1 ]⊤

W−1
2 = [ H⊤

1 H
⊤
2 H⊤

1 G
⊤
2 G⊤

1 ]⊤

W−1
3 = [ H⊤

1 H
⊤
2 H

⊤
3 H⊤

1 H
⊤
2 G

⊤
3 H⊤

1 G
⊤
2 G⊤

1 ]⊤

...

W−1
J = [ H⊤

1 . . .H⊤
J H⊤

1 . . .H⊤
J−1G

⊤
J . . . H⊤

1 G
⊤
2 G⊤

1 ]⊤.

(2.7)

2.3. Connection Between DWT and Linear Filtering, Mallat’s

Algorithm

The computation of the DWT via the matrix multiplication (which has quadratic

computational complexity) can be replaced by a less demanding pyramidal algo-

rithm by S.G.Mallat 6,7. Mallat’s algorithm exploits the structure of matrix W

(as seen in the previous section) and performs recursively:

The input vector x is filtered by the low-pass filter h and high-pass filter g,

respectively. Both the outputs are then downsampled. This way two new series of

coefficients are obtained, containing exactly or approximately half the number of
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g, ↓ 2

a(0)

d(1)

h, ↓ 2

g, ↓ 2

a(1)

d(2)

h, ↓ 2

g, ↓ 2

a(2)

d(3)

h, ↓ 2

a(3)

j = 0

j = 1

j = 2

j = 3

Fig. 1. Mallat’s DWT pyramidal algorithm with depth J = 3. Signal x is decomposed using g,h

iteratively into the wavelet coefficients. The respective level of decomposition is shown on the left.

input samples (the number depends on the selected border extension type, see Sec.

2.1). The resultant coefficients produced by h are called approximation coefficients

and those produced by g detail coefficients of the signal at level j = 1.

The detail coefficients are stored and the process just described is repeated with

the approximation coefficients playing the role of the input signal. The number of

such iterations, the depth of decomposition, J , is optional. Fig. 1 shows the described

procedure for J = 3.

The limit for the choice of J usually presented in the literature is

Jmax = ⌊log2 s⌋ (2.8)

for a signal of length s. This comes from s/2J ≥ 1, or in words: there is no sense in

continuing the decomposition if there is only one coefficient left. Worth noting is that

(2.8) holds for arbitrary m but only in the case of periodic border extension. If any

other border extension is used, it is theoretically possible to continue the recursions

infinitely many times, but this lacks any practical meaning from a certain level on.

Such situations are discussed starting from Theorem 2.5 up to Corollary 2.3.

The DWT process has been described only briefly until now. The details have

been intentionally postponed to the next section.

2.4. DWT Pyramidal Algorithm Analysis

In this part, only border extensions of type 3 are considered (see Sec. 2.1 for details).

However, some of the results hold for the other types of border extension as well.
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Algorithm 1 (DWT with defining samples outside of the original signal

domain).

Input: input signal x of length s, two wavelet decomposition filters of equal length

m (either odd or even) — the high-pass g and the low-pass h —, the downsampling

type ε ∈ {0, 1}, the depth of decomposition J .

Output: Vectors of coefficients a(J),d(J),d(J−1), . . . ,d(1).

(1) Denote x as a(0). Set j = 0.

(2) One step of decomposition:

(a) Input signal border extension. Extend a(j) by (m − 1) samples from

both sides, whose values reflect the chosen type of border extension.

(b) Filtering. Filter the extended signal with g, which could be done by

means of convolution.

(c) Cropping off. Crop off m− 1 samples from both ends of the vector.

(d) Downsampling. Downsample the cropped vector, ε determines the type

used.

Store the resultant vector in d(j+1).

Repeat steps (b)–(d), now with the filter h, and store the result in a(j+1).

(3) Increase j by 1. If j < J start the next level beginning with step 2, else the

algorithm ends.

Remark 2.1. In contrast to Sec. 2.2, where the wavelet coefficients of different

depths were in fact kept in a single vector, one after another, here we rather think

of the output as of J +1 vectors (or sets) of coefficients. This is mainly for the sake

of convenience in addressing the individual coefficients.

Remark 2.2. Step 2(a) is done in each iteration of the algorithm. The values of

the samples used for extending the borders at level j = 0 are determined directly

from the input signal. For higher j the extensions are calculated from the actual

(approximation) coefficients by analogy. This means, among other things, that when

the extension is done incorrectly in some sense, the originated error accumulates

with increasing j. Section 2.4.5 deals with this issue.

In the following text, the identity x = a(0) is assumed. The individual elements

of wavelet coefficient vectors are referenced using their respective lowercase letters

— for example, a
(2)
15 denotes the 15th element of the approximate coefficients at

depth 2, i.e. of vector a(2). For purposes of the statements, level j ∈ {0, . . . , J} and

a fixed length of filters m are assumed.

2.4.1. How many coefficients does DWT produce

The denotation ncoef(s,m, j, ε) is used to represent the number of coefficients at

level j produced by Algorithm 1 from a signal of length s with filters of length m,

and with ε-type downsampling. Hence ncoef(s,m, J, ε) = len(a(J)) = len(d(J)). The

total number of coefficients at depth j will thus be 2ncoef(s,m, j, ε) and the overall
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number of coefficients produced will be len(a(J)) + len(d(J)) + len(d(J−1)) + . . . +

len(d(1)), or

n
∑

coef(s,m, J, ε) = ncoef(s,m, J, ε) +

J
∑

j=1

ncoef(s,m, j, ε). (2.9)

Theorem 2.1. Algorithm 1 produces

ncoef(s,m, 1, ε) =
s+m− 1

2
+

(

ε−
1

2

)

par(s+m− 1) (2.10)

coefficients from a signal of length s at decomposition depth J = 1. Equivalently,

ncoef(s,m, 1, ε) =

{

s+m−1
2 for s+m− 1 even,

⌊

s+m−1
2

⌋

+ ε for s+m− 1 odd.
(2.11)

Proof. According to 2(a), in the first recursion of the algorithm a(0) is extended

to s + 2(m − 1). After convolving it with the filter in step 2(b), the output length

is [s+ 2(m− 1) +m− 1] = s+ 3(m− 1). After step 2(c), the cropped central part

contains s+m−1 samples, the same length that the convolution of the not-extended

signal a(0) would result in. Using Lemma 1.1, after ε-type subsampling in step 2(d)

the final length is given by (2.10).

Remark 2.3. It is clear from the algorithm description that using either the low-

pass or high-pass filter results in the same number of coefficients. Nevertheless,

when biorthogonal filters are considered, it is known in advance that several border

coefficients are zero (due to the zero padding of the shorter filter, see Section 1.1.1).

Corollary 2.1. When even-type downsampling is utilized equation (2.10) becomes

ncoef(s,m, 1, 0) =

⌊

s+m− 1

2

⌋

. (2.12)

Proof. This comes directly from (2.11).

From this point up to the end of Section 2.4 we will assume only even-type

sampling ε = 0, mainly because otherwise the formulas would get unnecessarily

complicated. The symbol ε will be omitted in most of such cases. Such a restriction

does not impair generality, see Remark 1.3.

Theorem 2.2. Given a vector of length s, the number of wavelet coefficients pro-

duced at level j ≥ 1 is given by

ncoef(s,m, j) =
⌊

2−js+ (1− 2−j)(m− 1)
⌋

. (2.13)

Proof. The proof is done using induction with respect to j. For j = 1, Eq. (2.13)

holds true because substituting j = 1 into it becomes (2.12) after a short manipu-

lation. Assume that (2.13) holds for a fixed j ≥ 1. Then the number of coefficients
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Table 1. Numbers of coefficients returned by Algorithm 1 from signal of length s at different depths

of decomposition J . See Theorem 2.2 and the subsequent statements.

(a) ncoef(s,m, J) for m = 8

J\
s 4 6 7 8 9 15 30 45 90 125 180 250 335

1 5 6 7 7 8 11 18 26 48 66 93 128 171
2 6 6 7 7 7 9 12 16 27 36 50 67 89
3 6 6 7 7 7 8 9 11 17 21 28 37 48

4 6 6 7 7 7 7 8 9 12 14 17 22 27
5 6 6 7 7 7 7 7 8 9 10 12 14 17
6 6 6 7 7 7 7 7 7 8 8 9 10 12

7 6 6 7 7 7 7 7 7 7 7 8 8 9
8 6 6 7 7 7 7 7 7 7 7 7 7 8

Jconst – – 0 1 2 4 5 6 7 7 8 8 9

(b) n
∑

coef(s,m, J) for m = 8

J\
s 4 6 7 8 9 15 30 45 90 125 180 250 335

1 10 12 14 14 16 28 36 52 96 132 186 256 342
2 17 18 21 21 22 34 42 58 102 138 193 262 349
3 23 24 28 28 29 40 48 64 109 144 199 269 356
4 29 30 35 35 36 46 55 71 116 151 205 276 362

5 35 36 42 42 43 53 61 78 122 157 212 282 369
6 41 42 49 49 50 60 68 84 129 163 218 288 376
7 47 48 56 56 57 67 75 91 135 169 225 294 382
8 53 54 63 63 64 74 82 98 142 176 231 300 389

produced at depth j + 1 by a single recursion of Alg. 1 is given by (2.12):

⌊

ncoef(s,m, j) +m− 1

2

⌋

=

⌊

⌊

2−js+ (1− 2−j)(m− 1)
⌋

+m− 1

2

⌋

=

⌊

⌊

2{2−(j+1)s+ (1− 2−(j+1))(m− 1)}
⌋

2

⌋

=
⌊

2−(j+1)s+ (1− 2−(j+1))(m− 1)
⌋

,

exploiting the fact that
⌊

⌊2a⌋
2

⌋

= ⌊a⌋ holds true for any a ∈ R.

Tables 1(a) and 2(a) show the numbers of coefficients, computed by Alg. 1 for

various choices of s andm. Theorems now follow that prove the declared expansivity

of the analyzed type of DWT.

Theorem 2.3. It holds

n
∑

coef(s,m, 1) =

{

s+ (m− 2) for par(s) = par(m)

s+ (m− 1) for par(s) 6= par(m) .
(2.14)
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Table 2. Numbers of coefficients returned by Algorithm 1 from signal of length s at different depths

of decomposition J . See Theorem 2.2 and the subsequent statements.

(a) ncoef(s,m, J) for m = 15

J\
s 4 13 14 15 16 21 30 45 90 125 180 250 335

1 9 13 14 14 15 14 22 29 52 69 97 132 174
2 11 13 14 14 14 14 18 21 33 41 55 73 94

3 12 13 14 14 14 14 16 17 23 27 34 43 54
4 13 13 14 14 14 14 15 15 18 20 24 28 34
5 13 13 14 14 14 14 14 14 16 17 19 21 24

6 13 13 14 14 14 14 14 14 15 15 16 17 19
7 13 13 14 14 14 14 14 14 14 14 15 15 16
8 13 13 14 14 14 14 14 14 14 14 14 14 15

Jconst – – 0 1 2 3 5 5 7 7 8 8 9

(b) n
∑

coef(s,m, J) for m = 15

J\
s 4 13 14 15 16 21 30 45 90 125 180 250 335

1 18 26 28 28 30 34 44 58 104 138 194 264 348
2 31 39 42 42 43 47 58 71 118 151 207 278 362
3 44 52 56 56 57 60 72 84 131 164 220 291 376
4 58 65 70 70 71 74 86 97 144 177 234 304 390

5 71 78 84 84 85 88 99 110 158 191 248 318 404
6 84 91 98 98 99 102 113 124 172 204 261 331 418
7 97 104 112 112 113 116 127 138 185 217 275 344 431
8 110 117 126 126 127 130 141 152 199 231 288 357 445
9 123 130 140 140 141 144 155 166 213 245 302 371 458

10 136 143 154 154 155 158 169 180 227 259 316 385 472
11 149 156 168 168 169 172 183 194 241 273 330 399 486

Proof. Look at the difference between the number of coefficients at depth J =

1 and the number of signal samples: n
∑

coef(s,m, 1) − s = 2ncoef(s,m, 1) − s =

2
⌊

s+m−1
2

⌋

− s.

In the case of both s and m being even, this can be reformulated:

2

⌊

s+m− 1

2

⌋

− s = 2

⌊

s+m− 1

2
−

s

2

⌋

= 2

⌊

m− 1

2

⌋

(2.15)

= 2

⌊

2ℓ− 1

2

⌋

= 2(ℓ− 1)

= m− 2.

In the case of odd m the approach would be the same up to equation (2.15), from

where we would continue with (2.15) = 2
(

m−1
2

)

= m− 1.
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In the case of both s and m being odd, more tricks must be utilized:

2

⌊

s+m− 1

2

⌋

− s = 2

⌊

s+m− 1

2
−
⌊s

2

⌋

⌋

− 1

= 2

⌊

s

2
−
⌊s

2

⌋

+
m− 1

2

⌋

− 1

= 2
⌊m

2

⌋

− 1 (2.16)

= 2

⌊

2ℓ+ 1

2

⌋

− 1

= 2ℓ− 1 = m− 2,

where the fact s
2 −

⌊

s
2

⌋

= 1
2 was exploited. In the case of even m, Eq. (2.16) would

continue as (2.16) = 2
(

m
2

)

− 1 = m− 1.

Theorem 2.4. The overall number of DWT coefficients, n
∑

coef(s,m, J), increases

with each depth of decomposition, J , by (m− 1) or by (m− 2).

Proof. This follows immediately from Theorem 2.3 due to the DWT recursivity:

at depths greater than 1, the symbol s plays the role of the number of coefficients

from the previous depth.

These facts can be tracked down in Tables 1(b) and 2(b). The sequence of the

increments can be characterized even deeper, but before we do it in Theorem 2.6,

we first introduce a corollary and several other results.

Corollary 2.2. DWT via Algorithm 1 is expansive, i.e., n
∑

coef(s,m, J) > s, for any

depth J ≥ 1 with m ≥ 3. More precisely, for even s, an expansion occurs for m ≥ 3,

and for odd s, it occurs already for m ≥ 2.

Proof. These conditions follow from Theorems 2.3 and 2.4, where possible combi-

nations of parities of s and m are taken into consideration.

Remark 2.4. Therefore, only a wavelet transform using filters of length m = 2

(e.g. the Haar filters) can be non-expansive, and this holds only up to transform

depth j such that s is divisible by 2j .

Theorem 2.5. When the signal length is s = m−2 or s = m−1, one recursion of

DWT produces precisely twice the number of coefficients (approximation and detail),

formally written

ncoef(m− 1,m, 1) = m− 1, ncoef(m− 2,m, 1) = m− 2. (2.17)

In the case of s < m− 2 a single recursion of DWT generates more than twice the

number of coefficients, i.e. ncoef(s,m, 1) > s. Finally, when s ≥ m, DWT produces

coefficients whose number is less than 2s.
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Proof. The first part of the theorem: We evaluate ncoef(s,m, 1) using (2.12) and

we ask when it is equal to the number of signal samples:
⌊

s+m− 1

2

⌋

= s

⌊

s+m− 1

2
− s

⌋

= 0

⌊

−s+m− 1

2

⌋

= 0.

This can happen only when s = m− 2 or s = m− 1. The second and third part of

the theorem can be proved analogously.

These facts are again visible in Tables 1 and 2, together with all the ongoing

results.

Remark 2.5. Due to the recursive nature of the transform, Eq. (2.17) can be

generalized. For any depth j ≥ 0 it holds

ncoef(s,m, j) = s for either s = m− 1 or s = m− 2. (2.18)

Theorem 2.6. If s ≥ m−1, then there exists a finite depth of decomposition J ≥ 0

such that

n
∑

coef(s,m, j + 1) = n
∑

coef(s,m, j) + (m− 1) for all j > J, (2.19)

to put it in words: the increment of the total number of coefficients remains m− 1

for j > J . The minimum depth J satisfying (2.19) is obtained as

Jconst = Jconst(s,m) = min{j|j > log2(s−m+ 1)}, (2.20)

and we define Jconst = 0 if s = m− 1.

Proof. The goal is to find the minimum J for which (2.19) holds. The problem can

be, however, stated in a simpler way. In Theorem 2.5 it was proved that if s = m−2

or s = m−1, the DWT produces precisely double the number of coefficients during

a single recursion. Therefore, provided that there exists a depth J satisfying either

ncoef(s,m, J) = m−1 or m−2, then it must hold also for levels j ≥ J (see Remark

2.5). This means that the generally valid formula

n
∑

coef(s,m, j + 1)− n
∑

coef(s,m, j) =

= 2ncoef(s,m, j + 1)− ncoef(s,m, j)
(2.21)

could be simplified to (2.21) = ncoef(s,m, j) = s for the considered depths j ≥ J .

Thus the desired Jconst is the smallest j which accomplishes ncoef(s,m, j) = m− 1

or m− 2. These two possibilities will now be explored in detail, in order to see, in

the end, that only the first of them can actually occur.
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In the first case,

ncoef(s,m, j) = m− 1
⌊

2−js+ (1− 2−j)(m− 1)
⌋

= m− 1
⌊

2−js+ (1− 2−j)(m− 1)− (m− 1)
⌋

= 0
⌊

2−j(s−m+ 1)
⌋

= 0,

which means that any suitable j complies with

0 ≤ 2−j(s−m+ 1) < 1, i.e.

0 ≤ (s−m+ 1) < 2j . (2.22)

The left inequality is fulfilled due to the assumption s ≥ m− 1. Thus, the smallest

j satisfying (2.22) is just Jconst from (2.20); the logarithm is defined for s ≥ m,

therefore all complying levels j are positive, j > 0.

In the second case, the following inequalities can be derived analogously:

−1 ≤ 2−j(s−m+ 1) < 0, i.e.

−2j ≤ (s−m+ 1) < 0. (2.23)

The right-side inequality contradicts the assumption. Thus, in the case s ≥ m − 1

the increment can never stabilize at m− 2.

Example 2.3. For a filter of m = 8 and signal length s = 180 we have Jconst =

Jconst(180, 8) = 8 and the series of increments is

{n
∑

coef(s,m, j + 1)− n
∑

coef(s,m, j) }∞j=0 = {6, 7, 6, 6, 7, 6, 7, 6, 7, 7, 7, . . .}.

Remark 2.6. Similarly, a theorem could be formulated that by s ≤ m − 2 the

series of increments first alternates between m − 2 and m − 1 until it stabilizes at

m− 2.

Remark 2.7. In contrast to the periodic case of boundary handling, where the

maximum decomposition depth is given by (2.8), here it can be seen that the trans-

form recursions can be theoretically repeated as many times as one likes. (Although

from the practical point of view it is not of interest.)

Corollary 2.3. Assuming s ≥ m− 1, Jconst is a depth of decomposition such that

it holds

ncoef(s,m, j) = m− 1 for all j ≥ Jconst. (2.24)

2.4.2. How many input signal samples are needed for computing a specified

number of coefficients

This section is devoted to the backward look — from the coefficient domain into

the time domain. For these purposes, nsamp(q, j,m) will denote the number of sam-
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input
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· · ·
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(1)
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(1)
5

· · ·

Fig. 2. Depiction of steps 2(a) to 2(d) of Alg. 1 for the filter length m = 4 and even downsampling

ε = 0. Each circle stands for a single vector entry (i.e., signal sample or coefficient). The circles with
squares inside stand for samples/coefficients induced/affected by the boundary extension. Marked

with empty circles, the procedure of obtaining the third output coefficient c
(1)
3 is calculated using

signal samples at indexes 3 to 6.

ples from the input signal that are needed to compute q consecutive coefficients at

decomposition level j.

Lemma 2.1. To calculate a single wavelet coefficient at level j, m coefficients at

level j − 1 are needed.

Proof. This is clear from the description of the algorithm; a wavelet coefficient at

depth j is just a single element of the convolution of vector a(j−1) with the wavelet

filter of length m; see Fig. 2.

Lemma 2.2. To calculate q ≥ 1 consecutive coefficients at level j it is necessary

to provide m+ 2(q − 1) consecutive coefficients at level (j − 1).

Proof. To calculate a single coefficient at level j it is necessary to have m coef-

ficients at level j − 1. Every other neighbouring coefficient at level j requires two

extra coefficients at level j − 1 due to the downsampling; see also Figs. 2 and 3.

Theorem 2.7. To calculate q ≥ 1 consecutive wavelet coefficients at level of de-

composition j ≥ 1, it is necessary to have nsamp(q, j,m) samples of the input signal,

where

nsamp(q, j,m) = (2j − 1)(m− 2) + 2jq. (2.25)

Proof. Recursive application of Theorem 2.2 leads to

nsamp(q, j,m) = m+ 2[nsamp(q, j − 1,m)− 1], (2.26)
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x = a(0)
· · ·
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· · ·
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· · ·
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· · ·

b r r r r r
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︸ ︷︷ ︸

a(3),d(3)
· · ·

r r
· · ·

Fig. 3. Depiction of Alg. 1 in three levels of decomposition, J = 3. Each coefficient at level j is

calculated using m coefficients from level j − 1. The filter length used is m = 4. Empty circles
indicate the “range of influence” of one coefficient from depth j = 2 at depths j = 1 and j = 0.

where we define nsamp(q, 0,m) = q. It will be shown by induction that (2.25)

is the non-recursive form of (2.26). For j = 1 it holds nsamp(q, 1,m) = m +

2[nsamp(q, 0,m) − 1] = m + 2(q − 1) due to (2.26). According to (2.25), we also

have nsamp(q, 1,m) = m+ 2q − 2 = m+ 2(q − 1).

Assume from now on that for a chosen j ≥ 1 Eq. (2.25) holds. Using (2.26),

nsamp(q, j + 1,m) = m+ 2[nsamp(q, j,m)− 1]

= m+ 2[(2j − 1)(m− 2) + 2jq − 1]

= [2(2j − 1) + 1](m− 2) + 2j+1q

= (2j+1 − 1)(m− 2) + 2j+1q.

Corollary 2.4. To calculate q ≥ 1 consecutive coefficients at level j it is necessary

to have nsamp(q, j − u,m) coefficients at level u, 0 ≤ u < j.

Proof. The statement can be proved via Theorem 2.7 — when talking about the

numbers of coefficients, the situation 0 ≤ u < j is actually equivalent to the situation

of enumerating the number of input signal samples (i.e. the coefficients at level 0)

for q coefficients at depth j − u.

Corollary 2.5. To calculate a single wavelet coefficient at level j, it is necessary

to have

nsamp(1, j,m) = (2j − 1)(m− 1) + 1. (2.27)

samples of the input signal.

Proof. Plugging q = 1 into (2.25) quickly leads to this result.

Table 3 shows the numbers of signal samples necessary for calculating a sin-

gle wavelet coefficient at different depths of decomposition. Fig. 4 shows the ta-

ble data in graphs; it is clear that the increase in filter length leads to increasing



June 24, 2013 10:54 WSPC/WS-IJWMIP ws-ijwmip

Discrete Wavelet Transform of Finite Signals: Detailed Study of the Algorithm 21

Table 3. Numbers of input signal samples necessary for computation of a single coefficient,

nsamp(1, j,m). Wavelet filter length m in horizontal direction, depth of decomposition j verti-
cally.

nsamp(1, j,m)

j
\m 2 3 4 5 6 8 10 12 14 16 18

1 2 3 4 5 6 8 10 12 14 16 18

2 4 7 10 13 16 22 28 34 40 46 52
3 8 15 22 29 36 50 64 78 92 106 120
4 16 31 46 61 76 106 136 166 196 226 256
5 32 63 94 125 156 218 280 342 404 466 528

6 64 127 190 253 316 442 568 694 820 946 1072
7 128 255 382 509 636 890 1144 1398 1652 1906 2160
8 256 511 766 1021 1276 1786 2296 2806 3316 3826 4336
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Fig. 4. The numbers of signal samples necessary for computation of a single coefficient: (a) depth
j is fixed, (b) filter length m is fixed.

nsamp(1, j,m) linearly; the increase of the decomposition depth leads to an expo-

nential growth.

2.4.3. Other theorems

Prior to the following considerations, several new terms and notation need to be

established:

• Two coefficients at a given level of decomposition will be called neighbouring

coefficients if their indexes differ by one. For example, d
(3)
23 and d

(3)
24 are

neighbouring at level 3. Two coefficients with q coefficients in between will

be termed q-distant. For example, a
(2)
19 and a

(2)
26 are 6-distant coefficients.
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Clearly, coefficients with a distance q = 0 are neighbouring coefficients.

• The range of influence of a coefficient from level j at level u, 0 ≤ u ≤ j,

is the set of indexes of coefficients at level u, which contribute to the value

of the specified coefficient at level j. This term is chosen because if the

particular coefficient were changed, all the coefficients in its range would

be “influenced” after performing the inverse transform (and vice versa).

The range of influence of the kth coefficient from level j at level u will be

denoted ran(k, j, u,m).

For example, for the coefficient d
(3)
11 we have ran(11, 3, 0, 5) =

{60, 61, . . . , 88}.

The lower boundary can turn out to be negative; such a case corresponds

to those coefficients that were appended by the border extension step in the

DWT algorithm. This can also be seen in Fig. 2; the range of influence of c
(1)
1

starts with the index −1 in the input signal x: ran(1, 1, 0, 4) = {−1, 0, 1, 2}.

Similar considerations hold for the upper boundary of the range.

• Shift in terms of signal samples for given two coefficients at level j is the

number of input signal samples by which the ranges of influence of the

respective two coefficients differ. For example, while the range of influence

of a given coefficient in the time domain (i.e., u = 0) would be {8, 9, . . . , 23}

and the other one would have its own range {12, 13, . . . , 27}, their shift in

terms of signal samples would be simply 4. Formally, for k1 ≤ k2, this will

be denoted nshift(k1, k2, j,m) = min(ran(k1, j, 0,m))−min(ran(k2, j, 0,m)).

• Given a pair of coefficients at level j, the shared coefficients at level u,

0 ≤ u < j, of these two are the coefficients at level u such that they si-

multaneously belong to both the ranges of influence of the coefficients from

level j. Returning to the above example, the samples in the time domain

(i.e. choosing u = 0) that are shared are x12, x13, . . . , x23. We are inter-

ested in the indexes, not in their values; formally, shared(k1, k2, j, u,m) =

ran(k1, j, u,m) ∩ ran(k2, j, u,m), while allowing negative indexes in the in-

tersection. The number of elements of such a set of indexes will be denoted

nshared(k1, k2, j, u,m).

Theorem 2.8. The length of the range of influence of a coefficient from level j at

level u is

|ran(k, j, u,m)| = (2j−u − 1)(m− 1) + 1. (2.28)

Proof. Corollary 2.4 says that the cardinality of such a set is equal to

|ran(k, j, u,m)| = nsamp(1, j − u,m), which becomes the desired formula after an

easy manipulation.

Remark 2.8. It is also immediately apparent that for even m, the length of the

range is also even, and for odd m, the length of the range is odd.
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Remark 2.9. It is not surprising that the quantity (2.28) is equal to (2.27) when

we take u = 0.

Lemma 2.3. The range of influence of the kth coefficient from level j at level u,

j ≥ u, satisfies

ran(k, j, u,m) = ran(1, j, u,m) + 2j−u(k − 1). (2.29)

Here, the addition means adding the number to each each element of the set.

Proof. It is clear that the range of influence is translated by 2j−u from coefficient

k to coefficient k − 1 at each level of decomposition due to the downsampling (see

Fig. 3).

Theorem 2.9. The range of influence of the kth coefficient from level j at level u

is

ran(k, j, u,m) =
{

2j−uk − (2j−u − 1)(m− 1), . . . , 2j−uk
}

. (2.30)

Proof. First, the upper boundary of the range will be derived. Based on Lemma 2.3

and an obvious definition ran(1, u, u,m) = {1} we can write max[ran(k, u, u,m)] =

max[ran(1, u, u,m)] + (k − 1) = k, which corresponds with the theorem, since k =

2j−uk for j = u.

Assume that the theorem is valid for j > u; from that the validity for j + 1 will

be derived:

max[ran(k,j + 1, u,m)] =

= max[ran(1, j + 1, u,m)] + 2j+1−u(k − 1)

= max[ran(2, j, u,m)] + 2j+1−u(k − 1)

= 2j−u · 2 + 2j+1−u(k − 1)

= 2j+1−uk.

The manipulations above were based mainly on the observation that the range of

influence of the very first coefficient from level j + 1 at level j always ends at the

element with index 2, which carries the analysis one level down. This fact can be

seen in Fig. 2 as well.

The length of the range of influence is known from Theorem 2.8, thus it is enough

to subtract that number from the above proved upper boundary 2j−uk to get the

desired starting index.

Theorem 2.10. The shift in terms of signal samples of two neighbouring coeffi-

cients at level j is

nshift(k, k + 1, j,m) = 2j . (2.31)

Two neighbouring coefficients at level j share

nshared(k, k + 1, j, 0,m) = (2j − 1)(m− 2) (2.32)
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samples of the input signal.

Proof. The first part is clear due to the downsampling at each level. Next, two

neighbouring coefficients at level j share m−2 coefficients at level j−1. Now, using

Theorem 2.7 it can be calculated how many signal samples are necessary to get

these coefficients; we get

nshared(k, k + 1, j, 0,m) = |shared(k, k + 1, j, 0,m)|

= nsamp(m− 2, j − 1,m)

= (2j−1 − 1)(m− 2) + 2j−1(m− 2)

= (2j − 1)(m− 2).

Example 2.4. For a filter of length m = 4, there are nshared(k, k + 1, 2, 0, 4) =

(22 − 1)(4− 2) = 6 time-domain samples shared by the neighbouring coefficients at

level 2, which can be evidenced in Fig. 3. For the Haar wavelet (m = 2) there are

no shared samples at any depth.

Theorem 2.11. For two q-distant coefficients at level j it holds:

1/ The shift in terms of signal samples of these coefficients is

nshift(k, k + q + 1, j,m) = nshift(k, k + 1, j,m) · (q + 1)

= 2j(q + 1). (2.33)

2/ The number of their shared samples in the time domain is given by

nshared(k, k + q + 1, j, 0,m) = max{0, (2j − 1)(m− 2)− 2jq}. (2.34)

Proof. The first part is clearly true as every coefficient in the line causes a shift

by the jth power of two, see Fig. 3. Next, using relations (2.32) and (2.33), it is

possible to derive that the number of time-domain samples that are shared by two

q-distant coefficients at level j is |shared(k, k + 1, j, 0,m)|−q ·nshift(k, k+1, j,m) =

(2j − 1)(m − 2) − 2jq. Should this number come out negative, we naturally set it

to zero.

Example 2.5. Given m = 4, j = 2, q = 1, the shift is nshift(k, k + 2, 2, 4) = 8 and

the number of shared signal samples is nshared(k, k+2, 2, 0, 4) = max{0, (22−1)(4−

2) − 22 · 1} = 2. When we change the level from j = 2 to j = 1, it comes out that

nshared(k, k + 2, 1, 0, 4) = 0. Again, this can be seen in Fig. 3.

Corollary 2.6. Let the filter length be m ≥ 3. In order to have a nonzero number

of shared samples in the input signal, the maximum allowed distance between a pair

of coefficients at level of decomposition j is

qmax(j,m) = max
{

q
∣

∣ q < (1− 2−j)(m− 2), q ∈ {0, 1 . . .}
}

. (2.35)

Proof. Equation (2.34) results in a positive number if (2j −1)(m−2) > 2jq holds.

The desired qmax follows directly from this inequality.



June 24, 2013 10:54 WSPC/WS-IJWMIP ws-ijwmip

Discrete Wavelet Transform of Finite Signals: Detailed Study of the Algorithm 25

Example 2.6. For m = 4, j = 2 we have qmax = 1 < 3
2 . For m = 6, j = 2 we have

qmax = 2 < 3.

Remark 2.10. Theorem 2.10 is actually a special case of Theorem 2.11 when

choosing q = 0.

Remark 2.11. The quantities (2.31) and (2.33) do not depend on the filter length,

m.

2.4.4. Example of Application

Although it is not the main goal of the article, an example where such an analysis

can be useful in practice is presented, following up on the results about the range

of influence.

Imagine that a signal is stored in a compressed way using its wavelet coefficients

(in the case of images this may roughly correspond to the SPIHT or JPEG2000

codecs). Imagine that the signal is subject to “local” editing in the original domain

(image retouching, for example). In a standard approach, the DWT would be per-

formed again on the whole signal after the edit has been done to store the modified

signal. But this is not necessary: we can save much computation thanks to Theorem

2.9, as we can utilize the knowledge of which coefficients only actually have been

changed by the editing.

Assume that only a single signal sample with index n has been edited. To derive

which coefficients at different levels of decomposition are possibly affected, we utilize

the mentioned Theorem: Regarding the right-hand side, we look for a coefficient

whose leftmost sample of the range of influence is less than or equal to n, formally

we wish to determine the maximum k such that min[ran(k, j, 0,m)] ≤ n. An easy

manipulation leads to

kmax = kmax(n, j,m) =

⌊

n+ (2j − 1)(m− 1)

2j

⌋

. (2.36)

Similarly, regarding the left-hand side, we end up with the desired starting index

at a specified level j equal to

kmin = kmin(n, j) =
⌈ n

2j

⌉

. (2.37)

Thus only values of coefficients indexed from kmin(n, j) to kmax(n, j,m) at levels

j = 1, . . . , J have to be recoded after editing.

See the program demo coefs affected by signal edit for the implementation

(in a slightly more general setup).

2.4.5. Situation at signal boundaries

The goal of this section is to determine how the result of the transform depends

on the chosen type of border extension (see Sec. 2.1). Such an information can



June 24, 2013 10:54 WSPC/WS-IJWMIP ws-ijwmip

26 Pavel Rajmic, Zdenek Prusa

be valuable e.g. in the case when the extension method would have been chosen

inappropriately by mistake. Then the coefficients “near the boundaries” can have

“incorrect” values. We are looking for an answer to this question:

How many wavelet coefficients at decomposition level j are affected by the val-

ues of samples by which the signal is extended according to a selected boundary

extension method?

Such a number will be denoted naffect(j,m). At first, the situation when the

depth of decomposition is just 1 will be explored at the “left” and the “right”

boundaries of the signal.

Theorem 2.12. The boundary extension type affects

nleft
affect(1,m) =

⌊

m− 1

2

⌋

, and

nright
affect(1,m) =

⌊

m− 1

2

⌋

+ par(s) par(m− 1)

(2.38)

“left” and “right” wavelet coefficients, respectively. Thus, the scope of affection is

the same at both ends of coefficient vectors, except the case when the signal length

s is odd and m is even — then the number of the affected coefficients at the right

side is greater by one coefficient.

Proof. In the first iteration of DWT (Algorithm 1), the input signal (j = 0) is

initially extended by m − 1 samples from both sides. Therefore, the number of

coefficients affected by these m − 1 samples at level j = 1 is
⌊

m−1
2

⌋

at the left

side. This fact can be seen in Fig. 2, where m = 4 results in just a single affected

coefficient at the first depth.

The situation at the right side is slightly more complicated. The parities of s

and m determine whether the range of influence of the rightmost wavelet coefficient

encompasses the last sample of the input signal after its extension or just the last

but one sample (this twofold option is due to the downsampling).

The last but one sample is encompassed in the case that 1 = par(s+m− 1).

Then it can be stated that

nright
affect(1,m) = max{q | (m− 2)− 2(q − 1) > 0}.

The inequality inside the brackets can be simplified to q < m
2 , which means, for m

being odd, that the greatest such q equals to m−1
2 =

⌊

m−1
2

⌋

, and thus it corresponds

to the theorem. For m being even the highest such q is m
2 − 1 = m−1

2 + 1
2 =

⌊

m−1
2

⌋

which again satisfies the theorem.

The very last sample falls into the range of influence of the coefficient if

par(s+m− 1) = 0. Then we can write

nright
affect(1,m) = max{q | (m− 1)− 2(q − 1) > 0}.

The inequality can be simplified to q < m+1
2 , which means that the greatest such q

equals to m+1
2 −1 = m−1

2 =
⌊

m−1
2

⌋

for m being odd. For m being even, the greatest

such q is nright
affect(1,m) = m

2 =
⌊

m
2

⌋

=
⌊

m
2 − 1

2

⌋

+ 1 =
⌊

m−1
2

⌋

+ 1.
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How many coefficients at an arbitrary level of decomposition j ≥ 1 are affected?

The following theorem gives the answer for the left-side case.

Theorem 2.13. The choice of signal boundary extension type affects

nleft
affect(j,m) =

⌊

(1− 2−j)(m− 1)
⌋

(2.39)

“left-side” wavelet coefficients at decomposition level j.

Proof. According to Theorem 2.12, nleft
affect(1,m) =

⌊

m−1
2

⌋

, which is in correspon-

dence with (2.39) being proved. At the next level of decomposition,m−1 coefficients

are newly appended to the current ones. We add
⌊

m−1
2

⌋

already affected coefficients

to them to obtain the total number of affected coefficients at depth j = 2, by analogy

with (2.38):

nleft
affect(2,m) =

⌊

m− 1 +
⌊

m−1
2

⌋

2

⌋

.

The value of the inner term depends on the parity of m, therefore we distinguish

between two scenarios. For m odd,

nleft
affect(2,m) =

⌊

m− 1

2
+

m− 1

4

⌋

=

⌊

3

4
(m− 1)

⌋

.

For m even (thus m = 2k for some k) the term is more complicated. We exploit the

fact that
⌊

3
2k

⌋

=
⌊

3
2k + 1

4

⌋

for any k ∈ Z and we obtain

nleft
affect(2,m) =

⌊

m− 1

2
+

m− 2

4

⌋

=

⌊

3

4
(m− 1)−

1

4

⌋

=

⌊

3

2
k

⌋

− 1 =

⌊

3

2
k +

1

4

⌋

− 1

=

⌊

3

2

m

2
−

3

4

⌋

=

⌊

3

4
(m− 1)

⌋

,

which satisfies the theorem for j = 2.

For higher decomposition levels j, the procedure is similar but there are more

possibilities to be taken into account. To be precise, there are 2j−1 branches de-

pending not only on the parity of m, but also on its binary representation (let us

call it the higher-order parity). In any case, we exploit techniques from above and

a generalized formula
⌊

2j+1
2j k

⌋

=
⌊

2j+1
2j k + 1

2j+1

⌋

for k ∈ Z and j > 0.

Remark 2.12. For a filter of length m ≥ 3, the number of affected coefficients is

always nonzero, nleft
affect(j,m) ≥ 1. This fact, which immediately follows from (2.39),

can be seen in Table 4.
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Fig. 5. Illustration of Theorem 2.13. Approximation wavelet coefficients of the signal consisting

from s = 85 zero samples are shown. At each level of the decomposition, j = 1, . . . , 4, the DWT
was performed in a way that the existing coefficients were extended by ones as a dummy boundary-
handling method. Filter db3 which is of length m = 6 was used. From the left side, the number
of the affected (nonzero) coefficients increases up to four coefficients (which is the upper limit

according to Remark 2.13), from the right side it increases up to five coefficients. This in turn
means that there is only a single unaffected coefficient remaining at depth four.

Table 4. Numbers of coefficients nleft
affect(J,m) of the respective coefficient vectors, affected by the

choice of the boundary extension type. According to Theorem 2.13.

nleft
affect(J,m)

J\
m 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 1 1 2 2 3 3 4 4 5 5 6 6 7

2 0 1 2 3 3 4 5 6 6 7 8 9 9 10
3 0 1 2 3 4 5 6 7 7 8 9 10 11 12
4 0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Remark 2.13. From (2.39) it is also clear that the value of nleft
affect(j,m) gets closer

to (m − 2) with increasing j, and hits this value for j sufficiently large, see again

Table 4.

Theorem 2.14. The choice of the signal boundary extension type affects

nright
affect(j,m) = nleft

affect(j,m) + δj (2.40)

right-side coefficients at the decomposition level j, where δj ∈ {0, 1}. Thus the

number of affected right-side coefficients is always either equal to the number of
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affected left-side coefficients or greater by one.

Proof. It is not quite possible to express the number of right-side affected coeffi-

cients in an explicit form like it was in the case of Theorem 2.13, due to the term

[par(s) par(m− 1)] contained in nright
affect(1,m) in Eq. (2.38).

For j = 1, (2.40) corresponds to (2.38), when δ = par(s) par(m− 1) is chosen.

Thus, at the first decomposition depth there are
(⌊

m−1
2

⌋

+ δ
)

right-side affected

coefficients. The following approach is analogous to the proof of Theorem 2.12.

If the range of influence of the rightmost coefficient from level j = 2 contains

the rightmost coefficient at level j = 1 then the number of affected coefficients is

given by

nright
affect(2,m) = max

{

q

∣

∣

∣

∣

(m− 1) +

⌊

m− 1

2

⌋

+ δ − 2(q − 1) > 0

}

.

The inequality can be rewritten as q <
⌊

3(m−1)
2

⌋

/2 + 1 + δ
2 , which becomes q <

3(m−1)
4 + 1+ δ

2 for odd m; the greatest such integer q is
⌊

3(m−1)
4

⌋

or
⌊

3(m−1)
4

⌋

+ 1,

which proves (2.40). For evenm, the inequality becomes q < 3(m−1)
4 − 1

4+1+ δ
2 , which

means that the greatest such q is, again, equal to either
⌊

3(m−1)
4

⌋

or
⌊

3(m−1)
4

⌋

+1.

In the case of range of influence containing just the last but one coefficient from

level j = 1, the proving procedure is analogous. The proof for higher levels j is

analogous.

In the next theorem, an interesting simple property of the series of δj is stated.

Theorem 2.15. If, in the sense of Theorem 2.14, there is such j for which δj = 1

holds true, then δi = 1 holds also for all i ≥ j.

Proof. By similar means as the above proofs.

Remark 2.14. One can ask for a characterization of a setup in which all of the

wavelet coefficients at depth J are affected. Such a situation appears when

0 ≥ ncoef(s,m, J)− [2nleft
affect(J,m) + δJ ].

For example, the expression at the right side is precisely zero for m = 12, s = 80

and J = 2. At depth J = 1, 11 coefficients still remain unaffected, while at J = 3,

6 coefficients are affected even from both sides.

Remark 2.15. Although the number of affected coefficients naffect(j,m) can be

seemed small in comparison with the input signal length, we point out that the ratio

between naffect(j,m) and the number of wavelet coefficients at level j is increasing

exponentially in j! This is due to the reduction of the number of wavelet coefficients

to approximately one half of the previous length at each level of decomposition. The

just described dependency is shown in Fig. 5.
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Table 5. Numbers of left-side samples of the reconstructed signal which can be affected by the

choice of border extension type. According to Theorem 2.16.

J\
m 2 3 4 5 6 7 8 9 10 11 12

1 0 2 2 4 4 6 6 8 8 10 10
2 0 4 8 12 12 16 20 24 24 28 32
3 0 8 16 24 32 40 48 56 56 64 72

4 0 16 32 48 64 80 96 112 128 144 160
5 0 32 64 96 128 160 192 224 256 288 320
6 0 64 128 192 256 320 384 448 512 576 640

7 0 128 256 384 512 640 768 896 1024 1152 1280
8 0 256 512 768 1024 1280 1536 1792 2048 2304 2560
9 0 512 1024 1536 2048 2560 3072 3584 4096 4608 5120

10 0 1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

Theorem 2.16 corresponds with this notion and shows that the perturbation of

the “border” coefficients has an extensive impact on the signal after its reconstruc-

tion.

Theorem 2.16. Perturbation of coefficients which are affected by the choice of the

boundary extension type results in change of

2j
⌊

(1− 2−j)(m− 1)
⌋

(2.41)

original input signal samples from the left side.

Proof. Assume that all the coefficients of interest are perturbed. Theorem 2.9

defines the interval in the time-domain signal which contributes to the value of a

single wavelet coefficient, or, vice versa, what range in the time-domain a single

coefficient influences. For the kth coefficient at level of the decomposition j, such

an interval finishes at index 2j−uk = 2jk in the input signal level (u = 0). Now it

suffices to plug nleft
affect(j,m) from (2.39) to get the maximum range of the modified

coefficients in the time domain.

Remark 2.16. Although (2.39) gives the total number of affected coefficients, it

is clear that the closer the coefficients are to the “border”, the greater the affect

is. This fact comes from the calculation of the convolution inside the DWT, where

more of the extra-appended coefficients contribute to the resultant coefficient at

the border, compared to the resultant coefficient located more in the center of the

respective vector.

Similarly, the total number of affected reconstructed signal samples is given by

(2.41), but those samples closer to the signal border are affected more strongly, as

can be evidenced in Fig. 6.

Remark 2.17. Similar to Remark 2.14, one can ask when a situation appears

such that all the signal samples are affected by the boundary treatment method. It

appears in setups which satisfy
⌊

(1− 2−j)(m− 1)
⌋

≥ s
2j+1 .
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Fig. 6. Illustration of Theorem 2.16. The top graph shows the left end of the processed signal.
Its original behaviour is emphasized. The signal was subject to DWT, depth J = 1, filter db6 of
length m = 12, four times with four different types of boundary extension (corresponding to the

legend: extension with zeros, symmetrical, antisymmetrical, first order polynomial). The second
graph brings the close-up view of the situation. The first nleft

affect(1, 12) = 5 detail and approximation
coefficients are shown in the bottom two graphs. Prior to the reconstruction(s), which are depicted

using the respective line styles, these five detail coefficients were hard-thresholded with threshold
λ = 9 and then magnified five times to bring out the differences in the first and second graphs.
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3. Inverse Discrete Wavelet Transform (iDWT)

This section contains a detailed analysis of the iDWT algorithm. Similar to the

forward transform, the inverse transform can be performed by a matrix multiplica-

tion. For orthogonal filters, this matrix will be just the transpose of the forward one.

Nevertheless, Mallat’s algorithm for the inverse transform is again more effective to

be used:

The approximation and detail coefficient vectors are upsampled (i.e., zeros are

inserted in between pairs of coefficients) and convolved with reconstructing filters

h̃ and g̃, respectively. The results are summed up, and after cutting out the central

part, we end up with approximation coefficients belonging to a level smaller by

one than the initial level. This procedure is again done iteratively until the zero

level of decomposition is reached, which means we get the reconstructed signal in

the time domain. A single recursion of the inverse pyramidal algorithm is shown

schematically in Fig. 7.

When performing iDWT, the border extension type used in the forward DWT

(see Section 2.1) does not need to be known; for purposes of iDWT, it makes no

difference whether, for example, symmetric or antisymmetric extension was used.

On the other hand, the knowledge of the category of the border extension used must

be known (items 1 to 5 in the list). This is for the reason of correctly handling the

numbers of coefficients to be cut at the “borders”. Like in the analysis of DWT,

below we will consider only category 3, i.e., extending signal boundaries by defining

samples outside of the domain.

Remark 3.1. It is worth mentioning that, even though a very bad boundary han-

dling method is used, the reconstructed signal is identical to the original signal

until there is a perturbation of the wavelet coefficients. However, the values of the

“border” coefficients are “wrong”, and as such they are suitable neither for analysis

nor for processing (namely nonlinear processing, recall the thresholding example in

Fig. 6).

3.1. Analysis of pyramidal iDWT algorithm

Algorithm 2 (pyramidal algorithm for iDWT).

Input: a pair of the wavelet reconstruction filters of length m (in the case of

biorthogonal filters, the shorter one is zero-padded to the length of the longer one,

as described in Sec. 1.1.1) — the highpass filter g̃ and the lowpass filter h̃; the num-

ber of signal samples in the time domain s; the even/odd type of the upsampling

ε, and especially the J + 1 vectors of wavelet coefficients a(J),d(J),d(J−1), . . . ,d(1),

which arose from DWT, Alg. 1, using the same choice of ε.

Output: the reconstructed signal, stored in vector a(0).

(1) Set j := J .

(2) A single reconstruction level:
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↑ 2, h̃ ↑ 2, g̃

a(j)

a(j+1) d(j+1)

crop off

Fig. 7. Single-level wavelet reconstruction. The vector of approximation coefficients at level j, i.e.
a(j), is calculated from the vectors a(j+1) and d(j+1) using upsampling, filtering with h̃ and g̃,
and cropping off the unnecessary border coefficients.

(a) Upsampling. Perform ε-type upsampling of vectors a(j) and d(j).

(b) Filtering. Filter the upsampled vectors, i.e., perform the convolution

with reconstruction filters h̃ and g̃, respectively.

(c) Summing. Add up the outcomes of both convolutions.

(d) Cropping. For the resultant vector, keep just its “middle” part. The

starting index is m− par(m)− 1+2ε and the length of the portion to

be kept equals the length of vector d(j−1). When j = 1, define s to be

the length of the (nonexisting) vector d(0).

Denote the result a(j−1).

(3) Decrease j by one. If j > 0, skip to step 2., otherwise the algorithm ends.

Remark 3.2. According to Eq. (1.7), the ε-type upsampling in step 2(a) results in

a vector with 2p− 1+ 2ε entries, where p denotes the length of the initial vector of

coefficients at depth J , thus p = ncoef(s,m, J, ε). The vector after filtering in step

2(b) has the length o = (2p− 1 + 2ε) +m− 1 = 2p+m+ 2ε− 2. After the cutting

off in step 2(d), the length of the vector is equal to the length of the vector of detail

coefficients from the appropriate level of decomposition and it is therefore suitable

for calculations in the subsequent iteration.

Remark 3.3. We will show now why the knowledge of the original signal length s

is actually needed for the reconstruction algorithm 2. Then, in Remark 3.4, it will

be shown that in fact its parity par(s) is sufficient.

Formula (2.10) gives the number of coefficients that are calculated from

the signal using a filter of length m in a single iteration: p = s+m−1
2 +

(

ε− 1
2

)

par(s+m− 1). In turn, for example, signals of lengths s = 255 and s = 256

produce the same number of wavelet coefficients, assuming filters of even length and
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ε = 0, because

255 +m− 1

2
−

1

2
· 0 =

256 +m− 1

2
−

1

2
· 1.

From this it is clear that in each single reconstruction level it is necessary to know

the number of coefficients in the subsequent level, to avoid a mistake in the recon-

struction length. But such information is naturally available for all j ∈ {J, . . . , 3, 2}

as they can be easily identified from the lengths of the (stored) detail wavelet vec-

tors d(j−1). However, the vector denoted d(0) does not exist and therefore the length

of the original signal must be supplied.

Remark 3.4. In fact, it is sufficient to supply just the parity of the original signal

length, i.e. whether it is odd or even. Indeed, because using (2.11) we get p =
s+m−1

2 and thus s = 2p − m + 1 for s + m − 1 even. For s + m − 1 odd we get

p =
⌊

s+m−1
2

⌋

+ ε = s+m−2
2 + ε = s+m+2ε−2

2 and therefore s = 2p−m− 2ε+ 2. To

summarize, if m and the parity of the original signal s are known, then the original

signal length can be calculated by

s =

{

2p−m+ 1 for even s+m− 1,

2p−m− 2ε+ 2 for odd s+m− 1.
(3.1)

Remark 3.5. The coefficients cropping in step 2d in Alg. 2 pertains coefficients

starting at index m − par(m) − 1 + 2ε. This remark shows the derivation of this

formula and offers its interpretation.

Speaking in simple terms, the “middle” part that is to be retained has length

s and it is cut off from the vector after the convolution, which has length o. The

numbers of coefficients that are left out at both ends may differ and depend on the

values of s,m and ε. E.g. for s = 6, m = 6, ε = 0 we have o = 16 and the number

of coefficients that are left out is equal to 5 at both ends. But for s = 6, m = 9,

ε = 0 the convolution results in o = 23 entries and the number of coefficients that

are left out is equal to 7 from the left side and 10 from the right side.

A general formula for the starting index is

start =

⌊

o− s

2

⌋

− par(m) + ε[1− par(s+m− 1)] + 2ε, (3.2)

which suggests that the smallest possible number of left-side coefficients to be left

out is preferred (owing to the ⌊·⌋ operator) in the cropping process, nevertheless

this amount is still corrected by parities of m, s and ε. Using (3.1) and assuming
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(s+m− 1) to be even, formula (3.2) becomes

start =

⌊

o− s

2

⌋

− par(m) + ε · 1 + 2ε

=

⌊

(2p+m+ 2ε)− (2p−m+ 1)

2

⌋

− par(m) + 3ε

=

⌊

2m− 2ε− 1

2

⌋

− par(m) + 3ε

= m− ε+

⌊

−
1

2

⌋

− par(m) + 3ε

= m− par(m)− 1 + 2ε. (3.3)

The simplification of (3.2) to (3.3) can be obtained also for (s+m− 1) being odd.

Remark 3.6. What happens when distinct types of up-/downsampling ε are used

for the forward and inverse transforms, respectively? In Section 1.1.4 we stated

that the even-type and odd-type sampling differ by two extra zero samples, one

at the beginning and one at the end of the vector. Thus the convolution leads to

the same values using either ε = 0 or ε = 1, the only difference is the lengths of

the resulting vectors (the longer one contains two extra zeros). However, the left

and right borders of the cut in step 2d are derived (see Remark 3.5) assuming the

agreement of ε between the forward and inverse transforms, so in the other case the

cropping step would result in a failure of the reconstruction procedure.

4. Software

The paper is accompanied by several MATLAB functions, which implement key

parts of DWT and iDWT and demonstrate the properties described throughout the

paper. This set is not intended to form a comprehensive toolbox for computing the

wavelet transform like for example 19. Presented functions are independent on the

official Wavelet Toolbox 9.

To obtain particular wavelet filters, the w filters.m function can be used; it

contains impulse responses of filters available from the just mentioned commercial

toolbox (which provides function called wfilters).

The functions are compatible with biorthogonal filters of odd lengths (in contrast

to 9, see Remark 1.1 and description of short filt.m as well). The files can be

used as building blocks for other programs under the “BSDFree” licence. Testing

was performed in Matlab versions R2008b a R2010a.

The functions are downloadable from URL 17. Description of the m-files follows:

dwtmatrix . . . . generates the matrix for performing the forward DWT, see Section

2.2, Eq. (2.7)

sldwt . . . . . . . . . performs single-level DWT, the border extension is by zeros

slidwt . . . . . . . . performs single-level iDWT

mldwt . . . . . . . . . performs multi-level DWT, the border extension is by zeros
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mlidwt . . . . . . . . performs multi-level iDWT

downsample . . . performs dyadic downsampling with chosen ε-parity

upsample . . . . . performs dyadic upsampling using ε-parity

parity . . . . . . . . returns the parity of the input number

n coef . . . . . . . . returns the number of coefficients at a chosen decomposition pro-

duced by the DWT; corresponds to ncoef(s,m, J) as defined in (2.13)

n coef total . returns the total number of coefficients of the transform, see (2.9)

n samp . . . . . . . . returns the number of signal samples necessary for computation of

q subsequent wavelet coefficients; corresponds to nsamp(q, j,m) in

(2.25).

ran . . . . . . . . . . . returns the range of influence of a specified coefficient, ran(k, j, u,m)

from (2.30)

n shift . . . . . . . returns the shift in terms of signal samples for specified wavelet

coefficients; corresponds to (2.33).

n shared . . . . . . returns the number of coefficients/signal samples that are shared by

a pair of coefficients; corresponds to (2.34).

n affect l . . . . returns the number of left-side coefficients that are affected by the

boundary handling; corresponds to (2.39).

short filt . . . if both the impulse responses of a pair of input biorthogonal filters

contain zeros as a first sample, this function shortens the responses

by this sample; this is an auxiliary function intended mainly for ma-

nipulation with Matlab’s Wavelet Toolbox filters, which are always

padded with zeros to even lengths.

w filters . . . . returns four impulse responses h,g, h̃, g̃ according to the input

wavelet name. The biorthogonal filters are shortened as described

in short filt.

There are more files in the archive, mainly for testing and demo purposes. For

example, test dwt.m compares our transforms with Matlab’s. (Matlab’s wavedec

does not allow to choose ε, so again, we cannot forget that Matlab Wavelet Toolbox

uses the non-shortened filters, and thus if a comparison involving the biorthogonal

filters is performed, we have to use ε = 1 to get the “compatibility” back.)

5. Conclusion

The algorithms of forward and inverse discrete-time wavelet transform for finite-

length signals were presented in detail, so that the reader can easily implement them,

or/and utilize the attached Matlab files. However, optimization of the algorithms

(there are several possibilities 30,18) is beyond the scope of the article.

The principal contribution of the article is the detailed analysis of the algorithms’

properties and consequences. The text answers the questions about the precise

relationship between the signal samples and its wavelet coefficients, as they were

asked in the Introduction.

Several generalizations of the results can be easily made:
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• Wavelet packets differ from the ordinary DWT just in the branching of the

decomposition tree. This means that the values of the packet coefficients are

different but the actual lengths of the sets of coefficients in the individual

levels remain the same as in the DWT. Thus all the results trivially apply

to wavelet packets as well.

• Multi-dimensional wavelet transforms are in most cases performed as a

sequence of the one-dimensional ones. This is called separability and

the presented theorems apply to the multidimensional case dimension-by-

dimension using this principle. (A typical question from the field of image

processing that is answered by the article might be: Which coefficients are

affected by editing this region of pixels?)

• As was already stated above, many of the results apply not only to the

boundary handling method selected for our analysis, but also for the other

methods.
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