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Abstract

The paper describes a method of segmented wavelet transform (SegWT)
that makes it possible to compute the discrete-time wavelet transform of
a signal segment-by-segment, with exactly the same result as if the whole
signal were transformed at once. Due to its generality, the method can
be utilized in many situations: for wavelet-type processing of a signal in
real time or in case we want to process the signal in parallel or in case
we need to process a long signal, but the available memory capacity is
insufficient (e.g. in the DSPs). In the paper, the background theory and
the emerging principles of both the forward and the inverse SegWT are
explained.

Keywords segmented discrete-time wavelet transform, real-time wavelet transform,

SegWT, signal processing, algorithm

1 Introduction

The discrete-time wavelet transform (DTWT) has many applications in the field
of signal and image processing today. Most of them require signals to be com-
pletely known when the processing is initiated. The natural need for real-time
applications originated in the development of methods allowing the computa-
tion of the DTWT without knowing the signal in advance, and possibly with
minimum delay at the same time. Applications arising in the image processing
field such as wavelet compression segment-by-segment (e.g. JPEG2000 coding
for large images) lead to the same category of methods.

We are not interested in algorithms for transforming data received as a
continuous stream [4] (e.g. in the FPGAs), because we suppose the data come in
the form of nonoverlapping segments. Leaving these algorithms aside, methods
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Figure 1: The undesirable artefacts near the segments borders. The image was
(strongly) compressed using JPEG2000 algorithm, with tiling option switched
on; the square tiles of 128× 128 px in size — segments — are transformed sep-
arately.

for computing the wavelet transform in succession can be divided into two main
classes.

1.1 Inexact Methods

This class includes another two types of methods:
The first-type methods are based on signal windowing and overlapping the

resultant segments [2], analogous to the short-time Fourier analysis. However,
windowing introduces (apart from potential considerable numerical errors at
the window tails) severe problems when the wavelet coefficients are subject to
nonlinear processing, e.g. the thresholding step within a denoising algorithm.

The second-type methods approach the particular signal segments indepen-
dently — they “blindly” extrapolate samples beyond the boundaries of each
segment. There exist several such methods, either simpler or more complex [7].
This approach, of course, leads to undesirable artifacts on the signal boundaries
after the processing.

A typical example of the described inexactness can be seen in Fig. 1.

1.2 Exact Methods

This class, which we are most interested in, includes methods which actually
extend the boundaries by samples from the respective neighbouring segments.
Most of the contributions in these problems have come from researchers working
with images and video. They were motivated by the idea of splitting the com-
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putation into parallel processes run on individual workstations [3, 1]. Within
this class of algorithms, we can distinguish another two algorithm types:

The third-type algorithms split the signal into segments which are dis-
tributed to the particular processes. During the whole computation the pro-
cesses do not communicate with each other. Afterwards, the results are joined
together. Such an approach is suitable for systems where interchanging informa-
tion (i.e. wavelet coefficients) is slow and thus increases the total computation
time. The disadvantage is that a portion of computation is performed redun-
dantly, in several processes.

In the algorithms of the fourth type the processes mutually interchange data
during computation. Clearly, this is suitable in situations where the commu-
nication is fast. The principal advantage here is that there is no computation
redundancy. To be more concrete, wavelet coefficients located by the segment
boundaries computed at each “level” of the transformation are interchanged.

State-of-the-art algorithms belonging to both the third and the fourth group,
which can be found in the literature, are derived for the special case when each
segment length is equal to a power of two. This assumption is their drawback,
mainly for larger segments (e.g. the difference between 1024 and 2048 can be
inadmissibly big, considering for example that with images, 10242 .= 106 and
20482 .= 4 · 106). Also, there are situations where the segment sizes are not a
power of two (e.g. the signal buffer size in audio cards running with ASIO driver
could be 96 samples). Paper [5] gives directions for the non-power-of-two case.
However, there is one more thing: all of the algorithms mentioned are made just
for the purpose of forward DTWT, as they are mainly used for blockwise image
compression. Moreover, most of the published methods specialize in JPEG2000,
which means that they are restricted to the biorthogonal wavelet CDF 9/7.

1.3 Motivation and Goal of SegWT

The objective for the segmented wavelet transform, denoted SegWT, is naturally
to allow signal processing by its segments, so that in this manner we get the
same result (i.e. the same wavelet coefficients) as in the common DTWT case. At
the same time, SegWT should utilize as much from the DTWT computational
routines as possible.

In this paper we present the SegWT method, which can be utilized for any
wavelet-type segmentwise data processing task, that is to say also in real time.

SegWT includes both the forward and the inverse parts of the transform.
The segment length and the wavelet filter can be chosen arbitrarily. In fact,
SegWT is of the third type in the sense of the above.

The derivation of the SegWT algorithm requires a very detailed knowledge
of the behavior of ordinary DTWT, so before we start with SegWT, we recall
the basic algorithm of DTWT.
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2 Classical DTWT Algorithm

Algorithm 1 (Decomposition pyramidal algorithm DTWT) Let x be a discrete
input signal of length s, the two wavelet decomposition filters of length m are
defined, highpass g and lowpass h, J is a positive integer denoting the decom-
position depth. Also, the type of boundary treatment [7, ch. 8] has to be known.

1. Denote the input signal x by a(0) and set j = 0.

2. One decomposition step:

(a) Extending the input vector. Extend a(j) from both the left and the
right sides by (m − 1) samples, according to the type of boundary
treatment.

(b) Filtering. Convolve the extended signal with filter g.

(c) Cropping. Take from the result just its central part, so that the re-
maining “tails” on both the left and the right sides have the same
length m − 1 samples.

(d) Decimation. Downsample the resultant vector.

Denote the resulting vector by d(j+1) and store it. Repeat items b)–d), now
with filter h, denoting and storing the result as a(j+1).

3. Increase j by one. If it now holds j < J , return to item 2, in the other
cases the algorithm ends.

After Algorithm 1 has been finished, we have the wavelet coefficients stored in
J + 1 vectors (of different length) a(J),d(J),d(J−1), . . . ,d(1).

3 Method of Segmented Wavelet Transform

In the problem, the following parameters play a crucial role: m . . . wavelet filter
length, m > 0, J . . . transform depth, J > 0, s . . . length of the segment, s > 0.

Based on a detailed knowledge of DTWT, it is possible to deduce fairly
sophisticated rules how to handle the signal segments. It is clear that it is
necessary to extend every segment from the left by an exact number of samples
from the preceding segment, and from the right by another number of samples
from the subsequent segment (extension, overlap). However, the number of such
samples depends on m,J and s, and it can be shown that every segment has
to be extended by a different length from the left and from the right, and these
lengths can also differ from segment to segment! And, of course, the first and
the last segments have to be handled in a particular way.
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Figure 2: Scheme of signal segmentation. The input signal x (a) is divided into
segments of equal length and the last one can be shorter than this (b).

3.1 Important Theorems Derived from DTWT Algorithm

Before we introduce a detailed description of the SegWT algorithm, several
theorems must be presented. More theorems including proofs can be found in
[6, ch. 8]. We assume that the input signal x is divided into S ≥ 1 segments
of equal length s. Single segments will be denoted 1x,2x, . . . ,Sx. The last
one can be less long than s and the number S does not have to be known in
advance. See Fig. 2. The signal boundary treatment considered in this paper
is “zero-padding”, when the boundaries are extended by zeros (most suitable
for processing audio recordings, for example), but switching to another type of
treatment is easy.

By the formulation that two sets of coefficients from the k-th decomposition
level follow-up on each other we mean a situation when two consecutive segments
are properly extended, see Figures 2 and 3, so that applying the DTWT of
depth k, with step 2a) omitted (cf. Algorithm 3, page 9), separately to both
the segments, let us say nx and n+1x, and joining the resultant coefficients
together leads to the situation that the last coefficient computed from nx and
the first coefficient computed from n+1x would be neighboring in case the signal
is transformed by the ordinary DTWT.

Such a situation is desirable and the theorems below lead to proper handling
of the consecutive segments.

Theorem 1 In case that the consecutive segments have

r(k) = (2k − 1)(m − 1) (1)

common input signal samples, the coefficients from the k-th decomposition level
follow-up on each other.

Thus, for a decomposition depth equal to J it is necessary to have r(J) =
(2J−1)(m−1) common samples in the two consecutive segments after they have
been extended. This extension must be divided into the right extension of the
first segment (of length R) and the left extension of the following segment (of
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Figure 3: Illustration of extending the segments.

length L), while r(J) = R+L. However, the lengths L,R ≥ 0 cannot be chosen
arbitrarily. In general, the numbers L and R are not uniquely determined and
must comply with strict rules that will be shown. The formula for the choice
of extension Lmax, which is unique and the most appropriate in the case of
real-time signal processing, is given in Theorem 2.

For the purpose of the following, we assign the number of the respective
segment to the variables Lmax, Rmin, l, so that the left extension of the n-th
segment will be of length Lmax(n), the right extension will be of length Rmin(n)
and the length of the original n-th segment with the left extension joined will
be denoted l(n).

Theorem 2 Let the n-th segment be given, whose length including its left ex-
tension is l(n). The maximum possible left extension of the next segment,
Lmax(n + 1), can be computed by the formula

Lmax(n + 1) = l(n) − 2J ceil
(

l(n) − r(J)
2J

)
. (2)

The minimum possible right extension of the given segment is then

Rmin(n) = r(J) − Lmax(n + 1). (3)

Theorem 3 The length of the right extension of the n-th segment, must comply
with

Rmin(n) = 2J ceil
(ns

2J

)
− ns, n = 1, 2, . . . , S − 2. (4)

From (4) it is clear that Rmin is periodic with respect to s with period 2J ,
i.e. Rmin(n + 2J ) = Rmin(n). This property, among other things, can be seen
in Table I.
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Theorem 4 (on the total length of segment) After the extension, the n-th seg-
ment of original length s will be of total length

∑
(n), which can acquire one of

two values, either

r(J) + 2J ceil
( s

2J

)
or r(J) + 2J ceil

( s

2J

)
− 2J . (5)

The overall illustration of SegWT can be seen in Fig. 4. The particular
algorithms are described in detail in the next sections.

3.2 Algorithm of Forward SegWT

The algorithm works such that it reads (receives) individual segments of the
input signal, makes them extend each other in a proper way, then it computes
the wavelet coefficients in a modified way and, in the end, it easily joins the
coefficients. There is no need to know how many segments will be in total, we
only require that in the moment when the last segment is received, we know
that information.

Algorithm 2 Let the wavelet filters g and h be of length m and the decomposi-
tion depth be J . The boundary treatment mode is “zero-padding”. The segments
of length s > 0 of the input signal x are denoted 1x,2x,3x, . . . The last segment
contains s′ ≤ s samples.

1. Set n = 1, last = 0.

2. Read the first segment, 1x. Extend it from the left by r(J) zero samples.
Update ‘last’.

3. If, at the same time, the n-th segment is the last one

(a) Extend the n-th segment from the right by such a number of zero
samples that its total length will be Lmax(n) + s.

(b) Extend the n-th segment from the right by r(J) zero samples.

(c) Compute the transform of depth J of the extended segment using
Algorithm 3.

(d) Modify the vectors containing the wavelet coefficients by trimming off
a certain number of redundant coefficients from the left side, specifi-
cally: on the k-th level, k = 1, 2, . . . , J − 1, trim off r(J − k) coeffi-
cients.

(e) Trim off redundant coefficients from the right so that on the k-th level
floor

(
2−k(Lmax(S) + s′)

)
coefficients remain.

(f) Trim off the vectors in the same manner as in 3d, but this time from
the right.

(g) Store the result as na(J),nd(J),nd(J−1), . . . ,nd(1).

Otherwise
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(h) Read the (n + 1)-th segment, update ‘last’.
(i) Compute Lmax(n + 1) and Rmin(n) (see Theorem 2).
(j) Extend the n-th segment from the right side:

If last = 1 (i.e. we have the last segment)
i. Compute the difference diff = max(0, Rmin(n) − s′).
ii. If diff > 0 (i.e. not enough samples in the last segment for

extension by Rmin(n))
A. Extend the n-th segment from the right side by s′ samples

from the last segment.
B. Extend the n-th segment from the right side by another diff

zero samples.
Otherwise

C. Extend the n-th segment from the right side by Rmin samples
taken from the last segment.

Otherwise

iii. Extend the n-th segment from the right side by Rmin samples
taken from the last segment.

(k) Extend the (n+1)-th segment from the left side by Lmax(n+1) samples
taken from segment n.

(l) Compute the DTWT of depth J from the (extended) n-th segment
using Algorithm 3.

(m) Modify the particular vectors containing the coefficients in the same
manner as in 3d.

(n) Store the result as na(J),nd(J),nd(J−1), . . . ,nd(1).

(o) Increase n by 1 and go to item 3.

Algorithm 3 This sub-algorithm is identical to Algorithm 1 with the exception
that we omit step 2a), i.e. we do not extend the vector.

The output of Algorithm 2 is S(J + 1) vectors of wavelet coefficients

{ ia(J), id(J), id(J−1), . . . ,id(1)}S
i=1. (6)

If we simply join these vectors together, we obtain a set of J + 1 vectors, which
are identical to the wavelet coefficients of signal x.

The flowchart of Algorithm 2 is in Fig. 5.

3.3 Corollaries and Limitations of SegWT Algorithm

In [6] several practical corollaries for SegWT can be found, e.g. that the segments
cannot be shorter than 2J . From the description in the above sections it should
be clear that the delay of Algorithm 2 is one segment (i.e. s samples) plus the
time needed for the computation of the coefficient from the current segment. It
can be easily shown that in the special case of s being divisible by 2J it even
holds Rmin(n) = 0 for every n ∈ N (see Theorem 3), i.e. the delay of the forward
method is determined only by the computation time!
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Figure 5: Flowchart of the forward SegWT, with zero-padding treatment of the
signal boundaries. The main loop, which is applied to all the segment but the
first and last ones, is emphasized by the thicker line.
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Table I: Example — lengths of extensions for different lengths of segments s.
The depth of decomposition is J = 3 and the filter length is m = 16.

s n 1 2 3 4 5 6 7 8 9 10 11 12 . . .

512 Lmax(n) 105 105 105 105 105 105 105 105 105 105 105 105 . . .

Rmin(n) 0 0 0 0 0 0 0 0 0 0 0 0 . . .∑
(n) 617 617 617 617 617 617 617 617 617 617 617 617 . . .

513 Lmax(n) 105 98 99 100 101 102 103 104 105 98 99 100 . . .

Rmin(n) 7 6 5 4 3 2 1 0 7 6 5 4 . . .∑
(n) 625 617 617 617 617 617 617 617 625 617 617 617 . . .

514 Lmax(n) 105 99 101 103 105 99 101 103 105 99 101 103 . . .

Rmin(n) 6 4 2 0 6 4 2 0 6 4 2 0 . . .∑
(n) 625 617 617 617 625 617 617 617 625 617 617 617 . . .

515 Lmax(n) 105 100 103 98 101 104 99 102 105 100 103 98 . . .

Rmin(n) 5 2 7 4 1 6 3 0 5 2 7 4 . . .∑
(n) 625 617 625 617 617 625 617 617 625 617 625 617 . . .
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3.4 Few Examples

• For J = 5 and m = 8, the minimum segment length is 32 samples. When
we set s = 256, Rmin will always be zero and Lmax = r(5) = 217. The
length of every extended segment will be 256 + 217 = 473 samples.

• For J = 5 and m = 8 we set s = 300, which is not divisible by 25. Thus
Rmin and Lmax will alternate with period 8 such that 0 ≤ Rmin ≤ 31 and
186 ≤ Lmax ≤ 217. The total length of segment after extension will be
either 505 or 537.

• (Example illustrated in Fig. 4) For J = 3, m = 4, s = 92, the extensions
will alternate between two states, either Rmin = 4 and Lmax = 17 or
Rmin = 0 and Lmax = 21. The length of the extended segments will be
109 or 117 samples.

The increase of the samples entering the computation is naturally a price
paid for the fact that no errors will originate during processing the boundaries.

3.5 Algorithm of Inverse SegWT

The inverse algorithm is described below, in less detail than the forward one.
Blocks of wavelet coefficients (6) produced segment-by-segment by the forward
SegWT constitute the input for the inverse algorithm. Analog to the forward
case, we use the boolean flag last , which becomes true if the very last segment
has to be processed.

In addition to that, due to the downsampling step of the forward transform,
we loss information about the total length of the signal, more precisely we
do not know if the original length was a or a + 1 for some integer a. We
could solve this problem by accumulating the lengths of individual inverted
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segments, however, such a number could be very large, possibly overflowing the
processor arithmetics. A better solution is just to keep the signal parity (i.e. if
the accumulated length is is even or odd). The information is then used at the
very end of the signal for deciding to cut or not to cut the last reconstructed
sample.

The inverse SegWT partly utilizes the overlap-add principle for joining the
reconstructed pieces of the time-domain signal. The length of the overlap stays
r(J) all the time. As for the illustration, we again refer to Fig. 4.

Algorithm 4 Let the decomposition depth J be given, as well as wavelet recon-
struction filters g̃ and h̃ of length m, and coefficients na(J),nd(J),nd(J−1), . . . ,nd(1)

for all n.

1. Set n = 1. Set last = 0.

2. If last = 1 then the Algorithm ends.

3. Read the n-th block of coefficients and update ‘last’.

4. Extend the detail coefficients: on the k-th level, k = 1, . . . , J − 1, append
r(J − k) zero coefficients from the left side.

5. Compute the inverse transform of depth J using Algorithm 5.

6. If n �= 1, recall the samples for the overlap, saved in the last cycle, and
add them to the current inverted block.

7. Update the parity of the signal.

8. If last �= 1, append the central, non-overlapping part to the output. Save
the samples of the overlap of the current inverted segment for the next
cycle.
Otherwise Append the whole inversion to the output. Eventually crop
several samples from the end of the signal.

9. The output (a segment of a time-domain signal) is now complete and pre-
pared to be “sent”.

10. Increase n by 1 and return to item 2.

Algorithm 5 This algorithm is identical to the ordinary inverse wavelet trans-
form (i.e. upsampling – filtering – summing – cropping), but the cropping phase
is omitted here.

The flowchart of Algorithm 4 can bee seen in Fig. 6.
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Figure 6: Flowchart of the inverse SegWT. The main loop is emphasized by the
thicker line.
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3.6 Joining Forward and Inverse Parts to Form Algorithm
Capable of Real-Time Performance

The algorithms in Sec. 3.2 and 3.5 were presented separately for clarity. How-
ever, their easy integration into a simple joint loop forms a universal algorithm
for any wavelet-type processing task in real time. It can be shown that in the
case of s being divisible by 2J the total delay is no bigger than s samples, in
other cases no bigger than 2s.
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