
Image edges resolved well when using an
overcomplete piecewise-polynomial model

Michaela Novosadová
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Abstract—Used in the paper is an overcomplete piecewise-
polynomial image model incorporating sparsity. The paper shows
that using such a model, the edges in the image can be resolved
robustly with respect to noise. Two variants of the proposed
approach are both shown to be superior to the use of the classic
edge detecting kernels. The proposed method is in turn also
suitable for image segmentation.

Index Terms—image segmentation, smoothing, approximation,
denoising, piecewise polynomials, sparsity

I. INTRODUCTION

Segmentation of signals, and images in particular, is an
important field of research with a huge number of applications.
The individual segments of an image are distinguishable due to
the fact that they typically exhibit (in a wide sense) a consistent
character, and this character changes at the border of segments.
Models beyond the individual segmentation algorithms most
often rely on the mathematical modeling of what is understood
under the vague term “character”; however, there are also
approaches based on machine-learning segmentation from
training data [1], [2].

Within the approaches based on a priori modeling, one can
distinguish explicit and implicit types of models. In the “ex-
plicit” type, the signal is modeled such that it is a composition
of sub-signals which can often be expressed analytically [3]–
[8]. In the “implicit” type, the signal is characterized by fea-
tures that are derived from the signal by using a suitable linear
operator [9]–[12]. The above differences are analogous to the
so-called “synthesis” and “analysis” approaches, respectively,
recognized in the sparse signal processing literature [13], [14].
The two types of models are significantly different in the way
the signal is treated; however, connections between them can
be found, for example see [15].

In the paper, we accept the assumption that images consist
of piecewise-polynomial patches, while it is typically sufficient
to consider quadratic polynomials [16]–[20]. In that regard, the
segment border is a place in the image where the polynomial
characterization is subjected to a change, while within the
segments, the respective representation stays steady.
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With noise preset in the image, the segmentation success
naturally decreases. In the paper, we propose two methods
based on a single model and show that both of them perform
better in edge detection than standard methods do. Our work
was inspired by [3], where the authors use a similar model,
which they approximately solve using a greedy algorithm.
Contrariwise, our approach relies on the convex relaxation of
the sparsity measure [21]. As far as we know, the present
paper is the first to use convex relaxation for modeling
edges in images in connection with the piecewise-polynomial
assumption.

In our recent works, we dealt with various segmentation
algorithms for 1D signals, all of them following the piecewise-
polynomial model [5], [22], [23]. In the present work, we
generalize the 1D model to 2D, derive a new numerical solver
and adapt the way the model output is processed. Note that in
terms of the above categorization, the proposed model belongs
to the “explicit” class.

II. OVERCOMPLETE PIECEWISE-POLYNOMIAL MODEL

The images are modeled as being composed of non-
overlapping polynomial patches. To better understand the way
the two-dimensional polynomials are constructed, we first
present the one-dimensional model and then generalize it. For
more details on the 1D model, we refer to [23].

A. One-dimensional model

In continuous time, a polynomial of degree K is repre-
sentable as a linear combination of basis polynomials:

y(t) = x0p0(t) + x1p1(t) + . . .+ xKpK(t), t ∈ R, (1)

where xk are the expansion coefficients in such a basis.
The system {pk(t)}Kk=0 is only required to form a basis,
but additional properties such as orthogonality can sometimes
be beneficial, see [23]. In a discrete setting, the individual
elements of a polynomial signal are represented as

y[n] = x0p0[n] + x1p1[n] + . . .+ xKpK [n], n = 1, . . . , N.
(2)

Given {pk(t)}Kk=0, every signal given by (2) is uniquely
determined by the set of coefficients {xk}Kk=0. The uniqueness



of such an expansion is broken when we introduce a time index
also in these coefficients, allowing them to change in time:

y[n] = x0[n]p0[n] + x1[n]p1[n] + . . .+ xK [n]pK [n]. (3)

This makes the representation of the signal {y[n]}Nn=1 ex-
tremely overcomplete, nevertheless, this way of handling plays
a key role in the model below. It will be convenient to write the
latest relation in a more compact form, for which we introduce
the notation

y =

 y[1]
...

y[N ]

, xk =

 xk[1]
...

xk[N ]

, pk =

 pk[1]
...

pk[N ]

 (4)

for k = 0, . . . ,K. After this, we can write

y = p0 � x0 + . . .+ pK � xK (5)

with � denoting the elementwise (Hadamard) product. To
convert (5) to the form involving the standard matrix–vector
product, we define

Pk = diag(pk) =

pk[1] 0
. . .

0 pk[N ]

, k = 0, . . . ,K,

(6)
allowing us to write

y = P0x0 + . . .+ PKxK (7)

or, even more compactly,

y = Px = [P0| · · · |PK ]


x0|

...

|

xK

 . (8)

Such a description of a signal of dimension N is superfluous
in terms of the number of parameters; when the polynomials
are fixed (which is assumed in the rest of the paper), the
total number of (K+1)N parameters are used to characterize
the signal. Nevertheless, assume now that y is a piecewise
polynomial and that it consists of S independent segments.
Each segment s ∈ {1, . . . , S} is then described by K + 1
polynomials. In the above context, this can be achieved by
letting all the vectors xk be constant within the particular
segments, with a change at the segment border. Note that the
positions of the segment change-points are unknown.

The described model motivates the following idea. The finite
difference operator ∇ applied to the vectors xk produces
vectors that are sparse—actually, ∇xk has S − 1 nonzeros
at maximum. Moreover, the nonzero components of all ∇xk
occupy the same positions across k = 0, . . . ,K. This property
justifies the use of the group-sparse model introduced later.

B. Two-dimensional model

The natural extension to 2D is done through the Kronecker
product of 1D vectors. For brevity, the derivation of the
polynomial model will be introduced under the (natural)
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Fig. 1. Polynomials p00, p10, p21, p22 of size 100× 120, generated from
the standard basis of degree K = 2 (i.e. from 1, t, t2).

assumption that the degrees of polynomials in the vertical and
horizontal directions are identical.

The 2D polynomials are formed by all the combinations

p00 = p0v · p>0h
p01 = p0v · p>1h

...

pKK = pKv · p>Kh

making altogether (K + 1)2 polynomial basis images. The
subscripts “v” and “h” distinguish the generating 1D poly-
nomials in the vertical and horizontal direction, respectively.
See Fig. 1 for examples. It is easy to show that when both
the sets of vertical and horizontal prototypes form two respec-
tive orthonormal bases, then the new 2D system, too, is an
orthonormal basis.

Let the image signal be y ∈ RM×N with entries y[m,n],
m = 1, . . . ,M , n = 1, . . . , N . As in (5), the image is modeled
as

y = p00 � x00 + p01 � x01 + . . .+ pKK � xKK , (9)

where pk` are basis images of size M ×N as defined above,
and xk` are matrices of parameters, all of the same size M×N .

We need to identify an image with its vectorized form; this
way of perception is necessary for us to be able again to
express the model as a matrix–vector multiplication. Let the
vectorization operator vec(·) stack image columns, one after
another, into a single column. The model (9) reads

vec(y) = P00 · vec(x00) + . . .+ PKK · vec(xKK) (10)

when we define Pk` = diag(vec(pk`)). In short, convenient
form,

vec(y) = Px = [P00| · · · |PKK ]


vec(x00)

|

...

|

vec(xKK)

 . (11)



C. Basic idea

Following the just described image-generation model rely-
ing on P, our method is based on the convex optimization
problem presented in the next section. After the numerical
solver has found an optimal solution to the problem, the
solution is used in two possible ways to resolve the edges
of the image. Both variants include the thresholding operator
as the final step.

D. Optimization problem

As in the above case, in the 2D setting, too, the parame-
terization coefficients {xk`}k,` can be chosen such that they
describe the signal perfectly and, at the same time, they
are sparse under the difference operator ∇. However, the
difference operator has two forms now—the horizontal and
the vertical one.

This, together with the assumption that the observed signal
is corrupted by an i.i.d. Gaussian noise, motivates the follow-
ing formulation of the denoising problem:

x̂ = arg min
x

{‖Lvx‖21 + λ‖Lh reshape(x)‖21}

s.t. ‖vec(y)−Px‖2 ≤ δ. (12)

In this optimization program, the operators Lv and Lh rep-
resent, respectively, the stacked vertical and horizontal differ-
ences, such that

Lv =

 ∇ · · · 0
. . .

0 · · · ∇

 , (13)

with ∇ : RM 7→ RM−1 being the standard columnwise
difference operator. This operator is repeated (K+1)2 times—
the number of parameter maps—in (13). The operator Lh

is defined identically as Lv in (13), but with the difference
that ∇ is now the mapping ∇ : RN 7→ RN−1. The operator
reshape(·) is used to emphasize that it is necessary to tweak
the entries of x such that the horizontal differences are
computed using the linear operator Lh.

The first term of (12) is the penalty. Piecewise constant
xk` suggest that these vectors are sparse under the difference
operation. The usual convex substitute of the true sparsity
measure is the `1-norm [21], [24]. Recall, however, that in
addition to sparsity, the nonzero differences should appear at
the same spots, as argumented in Sec. II-A. Therefore, our
optimization should contain a penalty that promotes group
sparsity, whose convex substitute is the `21-norm [25]. The
`21-norm acts on a matrix and is formally defined by

‖Z‖21 = ‖Z1,:‖2 + . . .+ ‖Zp,:‖2 , (14)

i.e. the `2-norm is applied to the individual rows of Z and the
resulting vector is measured by the `1-norm. In our case, the
matrix is formed such that it is of size (M − 1)(N − 1) ×
(K+1)2 and as such, the `21 penalty promotes sparsity across
differentiated pixels, in line with the justification of the model.
For details, see [5].

The scalar parameter λ optionally weights the vertical vs.
horizontal differences. This parameter can differ from unity
in the case that the user wants to emphasize horizontal over
vertical structures and vice versa. Note, however, that this
parameter should not change when the size of the image should
“grow” proportionally in both directions, since in such a case
both the penalties grow proportionally as well; only δ should
scale with the image size.

The second term in (12) is the data fidelity term. The
Euclidean norm reflects the fact that gaussianity of noise
is assumed. Consider however, that δ accounts not only for
the noise power, but also for model imperfections, since real
images do not follow the piecewise-polynomial assumption
exactly. As such, this parameter has to be tuned. Finally, the
vector x̂ contains the obtained optimizers.

III. NUMERICAL SOLVER

The optimization problem (12) requires minimizing a sum
of convex functions within a convex set of feasible solutions.
Proximal splitting algorithms are suitable for such a class of
tasks. We utilize the Condat proximal algorithm [26], which
is able to solve (among more general formulations) problems
of the type

minimize h1(L1x) + h2(L2x) + h3(L3x), (15)

over x, where hi are convex functions and Li are linear
operators.

The connection between (15) and (12) is provided via
assigning h1 = ‖ · ‖21, h2 = λ‖ · ‖21, L1 = Lv, L2 =
Lh reshape(·). To fit the formulation (15), the feasible set is
recast in the unconstrained form using the indicator function
h3 = ι{z: ‖y−z‖2≤δ}, where ιC denotes the indicator function
of a convex set C [27]. Finally, L3 = P.

The algorithm that solves (12) is described in Alg. 1.
Therein, two operators are involved which have not been intro-
duced yet: The operator softgroup

τ performs “group” soft thresh-
olding with the threshold τ , where there are (M − 1)(N − 1)
disjoint groups, each containing (K + 1)2 coefficients. The
projector projB2(y,δ) finds the closest point in the `2-ball
{z : ‖y − z‖2 ≤ δ} with respect to the input point. Both
the operations are computationally cheap, for details see for
example [5].

The convergence of the algorithm is guaranteed when it
holds ξσ‖L>1L1 +L>2L2 +L>3L3‖ ≤ 1, where ‖ ·‖ denotes the
operator norm. The operator norm of the sum can be bounded
such that ‖L>1L1+L>2L2+L>3L3‖ ≤ ‖L1‖2+‖L2‖2+‖L3‖2.



Algorithm 1: The Condat Algorithm solving (12)
Input: P, y, δ
Output: x̂ = x(i+1)

Set the parameters ξ, σ > 0 and ρ ∈ (0, 2).
Set the initial primal variable x(0) and dual variables
u
(0)
1 ,u

(0)
2 ,u

(0)
3 .

for i = 0, 1, . . . do
x̄(i+1) =
x(i) − ξ

(
L>v u

(i)
1 + reshape> L>h u

(i)
2 + P>u

(i)
3

)
x(i+1) = ρ x̄(i+1) + (1− ρ)x(i)

p1 = u
(i)
1 + σLv(2x̄(i+1) − x(i))

ū
(i+1)
1 = p1 − softgroup

1 (p1)

u
(i+1)
1 = ρ ū

(i+1)
1 + (1− ρ)u

(i)
1

p2 = u
(i)
2 + σLh reshape(2x̄(i+1) − x(i))

ū
(i+1)
2 = p2 − softgroup

λ (p2)

u
(i+1)
2 = ρ ū

(i+1)
2 + (1− ρ)u

(i)
2

p3 = u
(i)
3 + σP(2x̄(i+1) − x(i))

ū
(i+1)
3 = p3 − σ projB2(y,δ)(p3/σ)

u
(i+1)
3 = ρ ū

(i+1)
3 + (1− ρ)u

(i)
3

return x(i+1)

We have

‖L1‖2 = ‖Lv‖2 = max
‖x‖2=1

‖Lvx‖22

= max
‖x‖2=1

(
K∑
k=0

K∑
`=0

‖∇ vec(xk`)‖22

)

≤
K∑
k=0

K∑
`=0

(
max
‖x‖2=1

‖∇ vec(xk`)‖22

)

≤
K∑
k=0

K∑
`=0

‖∇‖2 = ‖∇‖2(K + 1)2 ≤ 4(K + 1)2

and the same holds for ‖L2‖. As regards ‖L3‖ = ‖P‖,
we have ‖P‖2 = ‖PP>‖ and thus it suffices to find the
maximum eigenvalue of PP>. Since P has a multi-diagonal
structure (cf. (11)), PP> is diagonal and thus it suffices to find
the maximum on its diagonal. Altogether, the convergence is
guaranteed when ξσ

(
max diag(PP>) + 8(K + 1)2

)
≤ 1.

IV. EXPERIMENTS

The goal of the experiment was to establish whether the
proposed problem (12) can help in indicating edges in noisy
images better than the standard edge detection methods.

The experiment was designed similar to that of the evalua-
tion in [3]. The starting signals for the test were the standard
grayscale photographs taken from Matlab, the range of whose
values was 0 to 255. The images were contaminated with zero
mean i.i.d. gaussian noise.

1) Coins, lower noise: The first experiment was performed
with the photo depicting a number of coins, see Fig. 2. The
image is of size 246×300 px. We superposed the noise over
it with the standard deviation σ = 20.

As the ground truth edges we consider the result of the Sobel
operator [28] applied to the original, clean image, subsequent
normalization of the result such that the maximum absolute
value is one, and finally the thresholding of the absolute values.
The output, i.e. the binary map, is supposed to indicate the true
positions of edges. We chose a threshold value of 0.15 for this
particular image, which retained the important details at the
sides of the coins. See Fig. 2.

As the standard way of edge detection we consider the
application of the Sobel operator to the noisy image and
thresholding (the normalized absolute values). In this process,
we tuned the threshold to a compromise such that false edges
do not appear too often while some of the details are still
preserved in the coins. In our particular case, the threshold
was 0.24.

The newly proposed approach was as follows: In the opti-
mization problem (12), the standard basis of degree K = 2
was used as the generating polynomial basis, corresponding
to the examples in Fig. 1. The basis images p00, . . . ,p22 were
used to form the model matrix P as described in Sec. II-B.
The model error δ = 4 000 was allowed.

We let Alg. 1 run for 500 iterations with this setting (which
took 3 minutes on a PC equipped with Intel i7 processor and
16 GB of RAM). This way we obtained the solution to (12),
namely x̂. This vector is used in two distinct ways to get an
estimate of the image edges.

The first way simply synthesizes the denoised image, i.e. it
forms the image by ŷ = Px̂ and reshapes the resulting column
into a matrix of the size 264×300. Then, the above described
convolution with the Sobel kernel and thresholding is applied
as in the above cases. Again, the threshold was found (0.14)
to produce the best-looking compromise between false alarms
and edge preservation.

The second way exploits the multiple information contained
in x̂, in contrast to using the single synthesized image alone.
In particular, recall that the edges are (at least in the model)
indicated in all the sets of parameters xk` in the same places,
cf. (9). The space of x is much larger than the image space
and therefore the parameters could potentially be helpful in
detecting the edges. We first compute the Sobel operator on
all the individual parameter maps x̂k`. Then we compute
pixelwise `2-norms along the (K+1)2 parameters. The output
is a single matrix and is subject to thresholding (in our case
with the threshold 0.12).

In total, we compare three methods (Sobel and that proposed
in two versions) with the “ground truth”. The results can be
seen in Fig. 2.

2) Coins, higher noise: The same experiment but with
greater noise is presented in Fig. 3 (the respective thresholds
are 0.15, 0.29, 0.16 and 0.18; δ = 6 000).

3) Coins, higher noise, orthonormal basis: The same image
was processed using the orthonormal basis instead of the
standard basis [23]. This time, the model error was set to
δ = 8 000 and the respective thresholds are 0.15, 0.29, 0.14
and 0.14. To reach convergence, we had to let Alg. 1 run for
10 000 iterations. The experiment is presented in Fig. 4.



4) Cameraman: The cameraman image of the size
256× 256 (Fig. 5) was processed using the standard basis and
with the model error δ = 7 000 and the respective thresholds
are 0.25, 0.29, 0.18 and 0.16. To reach convergence, we had
to let Alg. 1 run for 500 iterations.

5) Rice: The rice image of the size 256× 256 (Fig. 6) was
processed using the standard basis and with the model error
δ = 8 000 and the respective thresholds are 0.24, 0.4, 0.2 and
0.18. To reach convergence, we had to let Alg. 1 run for 500
iterations.

A. Discussion

It is clear that with both of our methods we were able
to indicate the edges significantly better than the standard
detection kernels. Note, however, that the price paid is vastly
longer computation times. The detection based on parameter
maps has beaten the simpler synthesizing approach.

V. SOFTWARE AND DATA

The data and the implementation for Matlab can be down-
loaded from the URL http://www.utko.feec.vutbr.cz/∼rajmic/
software/edge detect.zip. The archive is prepared in the sense
of reproducible research; note, however, that the noise is
generated each time the script is run, and that the orthonormal
polynomials in experiment IV-3 are based on randomness too.

VI. CONCLUSION

We have presented a model based on overcomplete
piecewise-polynomial image assumption with group sparsity.
The proposed model provides the basis for two simple methods
for identifying image edges. We have shown that the two
methods resolve image edges robustly with respect to noise,
and that they exhibit a significant improvement over the
performance of the standard Sobel edge detecting kernel.
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Fig. 2. Results of the edge-detecting experiment. The left column shows the images, from top to bottom: original; noisy (σ = 20); synthesized by taking
ŷ = Px̂ (i.e. denoised); parameter maps x̂00, x̂01, . . . , x̂22 (from left to right and from top to bottom, in absolute values and jointly scaled to fit the
black–white range). The right column shows the respective edge maps obtained by thresholding gradient images. Only the last image (which gives best results)
is constructed from the parameter maps x̂k`.



Fig. 3. Results of the experiment, similar to the one presented in Fig. 2, but for noise standard deviation σ = 30.



Fig. 4. Results of the experiment for σ = 30 as in Fig. 3, but now with orthonormal polynomial basis.



Fig. 5. Results of the experiment for the cameraman image, σ = 30.



Fig. 6. Results of the experiment for the rice image, σ = 30.


