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Abstract

The paper proposes a fast algorithm for accurate estimation of frequency with-

in a specified, narrow range. The algorithm is useful for the identification of

the natural frequencies of cantilever beams for damage detections purposes. The

procedure is based on the generalized Goertzel algorithm combined with aprior-

i knowledge of the natural frequencies intervals for cantilever beams given their

physical characteristics. We compare our approach with the Chirp Z-transform

and several frequency or time-frequency methods to illustrate its advantages for

online damage detection.

Keywords: natural frequencies, generalized Goertzel algorithm, FFT,

time-frequency, spectrum, Chirp Z-transform, CZT, damage detection

1. Introduction

The detection of damages in cantilever beams using pre-computed natural fre-

quencies is a challenging task approached by several authors using different tech-

niques [1, 2, 3, 4]. The main non-invasive techniques for computing the natural
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frequencies closely related to our approach are the spectral methods like the Go-

ertzel algorithm [5, 6], Chirp-Z transform [7, 8] or time-frequency transforms like

the short-time Fourier transform (STFT) [9], wavelets [4] etc.

The major drawback of such procedures is the fact that only tiny changes in the

natural frequencies occur with the introduction of a damage, and also the technical

difficulties encountered when computing these frequencies. Also for online (real-

time) processing, the use of fast algorithms like the FFT and if possible even faster

is almost compulsory.

With the recent introduction of the generalized Goertzel algorithm in [10], it

became possible to exploit this algorithm in the search for the maximum peak in

the intervals where the natural frequencies of the cantilever beams could be found.

The paper is structured as follows: In section 2, we present the characteristics

of the experiment i.e. the cantilever beam and the signal analyzed, supporting the

practical motivation of our study. In section 3, we overview the generalized Go-

ertzel algorithm used for natural frequencies detection and compare it with Chirp-

Z transform (CZT), its natural competitor. In section 4, the proposed method for

determining a set of ten natural frequencies is described, while in section 5 we

compare results of our method with time-frequency methods and we present in

detail the advantages with respect to each of them. Lastly, the conclusions are

drawn.

1.1. Notation

In the following text we assume a discrete signal x of length N, whose sam-

ples can be complex, {x[n]} = {x[0],x[1], . . . ,x[N− 1]}. Symbol k can represent

the number (index) of the harmonic component in the DFT, thus k ∈ N as usual,

however, in the framework of generalized Goertzel algorithm we allow working
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with k ∈ R.

2. Natural frequencies of cantilever beams and identification of damages

Vibrations of the cantilever beam following a mechanical excitation are of

(damped) harmonic type and therefore it is natural to try to accurately identify the

frequencies contained in the oscillating waves.

A typical such signal (one of the signals we used for testing) in time domain

is plotted in Fig. 1. For acquiring the signal, we placed an accelerometer on the

free end of the unloaded beam. The sampling frequency was 26,500 Hz. The

informative time-frequency contents of this signal is plotted in Fig. 2.

To develop an algorithm for detection and localization of damages it is nec-

essary to have quantifiable indicators which characterize the dynamic behavior

of the beam in the undamaged and the damaged state, respectively. One of the

most used indicators in the non-invasive damage detection is the change in natural

frequency occurring with the alteration of the beam geometrical and mechanical

characteristics.

For our measurements and tests we used a steel cantilever beam having the

following geometrical characteristics: length l = 1000 mm, width b = 50 mm,

height h = 5 mm and consequently, for the undamaged state the cross-section

A = 250 · 10−6 m2, moment of inertia I = 520.833 · 10−12 m4. The mechanical

characteristics of the beam are mass density ρ = 7850 kg/m3, Young’s modulus

E = 2.0 ·1011 N/m2 and Poisson’s ratio µ = 0.3.

The damage in our case was simulated using the Finite Element Method (FEM)

in 1000 points on the beam. Also real damages for direct measurements purposes

were created on the beam in several most exposed points. The problem to high-
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light the appearance of a damage in beams using the natural frequency of a beam

depends on the forces acting on it, as well as on the dimension of the damage (the

cross-section reduction).

The described beam is considered as a reference. For beams with other dimen-

sions (l,b,h) or mechanical characteristics (ρ,E,µ) the problem can be solved in

a similar way by considering the scale influence.

During the numerical experiments, we aim at computing the first ten natural

frequencies since this set is usually enough for the requirements of damage detec-

tion procedures like [1].

3. Goertzel algorithm and Chirp-Z Transform

From the problem description given above, it is clear that detecting tiny changes

in the natural frequencies requires a procedure able to compute the signal’s fre-

quency spectrum with very fine resolution. This section is devoted to two algo-

rithms, candidates for this purpose. The algorithms are described and compared

here and a semiconclusion is drawn. All comparisons are done with the assump-

tion that everyting what allows precomputation is precomputed.

The FFT in its basic form is not included in this selection since it computes

only DFT bins which are too coarse to be useful in our problem, and the number

of samples which would increase the resolution is limited by design. Moreover,

as we are only interested in a pre-determined set of spectral intervals of interest,

computing the complete spectrum via FFT would be a waste of resources.
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3.1. Generalized Goertzel Algorithm

The original algorithm invented by G. Goertzel [5] serves to compute the k-th

single DFT component of the signal {x[n]} of length N, i.e.

X [k] =
N−1

∑
n=0

x[n]e−j2πk n
N , k = 0, . . . ,N−1. (1)

Multiplying the right side of this equation by 1 = ej2πk N
N and rearranging terms

leads to its equivalent,

X [k] =
N−1

∑
n=0

x[n]e−j2πk n−N
N , (2)

which could be regarded as a convolution. Standard signal processing literature

then helps to rewrite this as an IIR (infinite impulse response) linear time-invariant

system. The desired spectral sample X [k] is then found as the output of such

system at time n:

yk[n] = s[n]− e−j 2πk
N s[n−1], (3)

where s denotes the state variable of the (second-order) IIR system.

It should be emphasized that the transition from (1) to (2) holds for integer-

valued k only; in the case of k ∈ R, these two formulas are generally no longer

in agreement. (The period of the transformation kernel no longer corresponds to

N.) In fact, when k is not integer-valued, we can no longer speak of the DFT (1),

rather of the Discrete-time Fourier transform (DTFT), which is defined by

X(ω) =
∞

∑
n=−∞

x[n]e−jωn, ω ∈ R. (4)

With the notation ωk = 2π
k
N , k ∈ R, we can write that

X(ωk) =
N−1

∑
n=0

x[n]e−j2πk n
N , (5)
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where we exploited the compactness of the support of the signal {x[n]}.

In order to obtain the generalized Goertzel algorithm applicable for k ∈R, we

extend formula (5) by unity in the form of

ej2πk N
N · e−j2πk N

N = 1 for k ∈ R, (6)

leading to

X(ωk) = e−j2πk
N−1

∑
n=0

x[n]ej2πk N−n
N . (7)

Now with the same techniques as in the standard case we arrive at the DTFT

coefficient in the form of

yk[n] =
(

s[n]− e−j 2πk
N s[n−1]

)
· e−j2πk. (8)

Comparing this with the above, we indeed see that it is a generalization, since the

constant e−j2πk equals to one for k ∈ Z. In fact, the only variation compared to the

standard Goertzel algorithm is the multiplication by this constant at the very end

of the algorithm. Clearly, the constant e−j2πk affects only the phase of the result.

Article [10] deals with the derivation and properties in detail and among other

things it shows that the algorithm (in fact, both the standard and the generalized)

can be shortened by a few computations. The shortened generalized algorithm is

summarized in Fig. 3.

Since the fast variant of the Chirp-Z transform described in section 3.2 utilizes

the FFT, we now make a few remarks:

• While the signal length N is usually pushed to be a power of two for max-

imum FFT performance, the complexity of the Goertzel algorithm grows

linearly and regularly with the length.
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• The Goertzel algorithm is able to do computations on the run, i.e. each time

a new sample is acquired.

• The Goertzel algorithm allows a direct determination of the frequencies

from the input signal without any reordering of input or output data and

thus it is suitable for online processing.

• Since Goertzel algorithm is implemented as an IIR filter, thus large N can

cause propagation of the quantization error.

In [10] it was shown that for real input data of length N, the computation of

the Goertzel algorithm requires 3N operations per single frequency, so it is more

efficient than the FFT as long as the number of desired frequencies K does not

exceed 2log2 N. Having a window of length N = 1024 would therefore mean that

the Goertzel algorithm is faster up to K = 20 frequencies.

At specific situations, even more efficient scheme can be utilized, based of

combination of the FFT and Goertzel [11], however in our problem we do not

assume such situation can happen in general.

3.2. Chirp-Z Transform

The Chirp-Z transform (CZT), described well in a number of sources [7, 8], is

a procedure to compute a limited range of spectral frequencies, which are linearly

spread over a particular range. Formally, we are interested in K spectral samples

ωk = ω0 + k∆ω , k = 0, . . . ,K−1, i.e.

X(ωk) =
N−1

∑
n=0

x[n]e−j(ω0+k∆ω)n. (9)
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Substituting W = e−j∆ω and using original trick of Bluestein [12] yields

X(ωk) =W
k2
2

N−1

∑
n=0

x[n]e−jω0nW
n2
2 W−

(k−n)2
2 (10)

for k = 0, . . . ,K−1, which can be treated as convolution of two sequences, namely

{x[n]e−jω0nW
n2
2 } and {W− n2

2 }, followed by multiplication by W
k2
2 . (The name

of the transform comes from the fact that the signal {W− n2
2 } is usually called a

linear chirp.) Padding of these sequences to a proper length (power of two in most

cases) allows computation of (10) via fast convolution, i.e. performing the FFT on

both sequences, multiplying them in the spectral domain and the reverting by the

inverse FFT.

Should (9) be evaluated for K frequencies in the direct form, it would cost 8KN

operations. The cost of the Chirp-Z transform in its “fast” version is enumerated

in [13] as 20N log2 N +44N for K = N (i.e. the number of frequency points is the

same as the number of time-domain samples) and this count increases when N is

not a power of two. Therefore, it is more efficient to use the direct form if it holds

K ≤ 20log2 N +44
8

, (11)

so for example if N = 512 the breaking point is K = 28 and if N = 1024 the

breaking point is K = 30.

The the complexity when K is only a portion of N can be pushed lower. Ac-

tually, using a decimation scheme we arrive at 20N log2 K +45N−K operations.

This only holds in case of N being divisible by K, and being a power of two; and

is somewhat higher if this is not fulfilled. (The complexity of the radix-2 FFT is

assumed to be 5N log2 N in these enumerations.)
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3.3. Goertzel algorithm vs. CZT: comparing complexities

We see that applying the Goertzel algorithm K times, starting at ω0 and con-

tinuing by ∆ω steps, is equivalent in terms of results to performing the CZT once

with identical parameters. Thus, what counts here is the computational burden

implied by these two competitors.

Direct evaluation of CZT entry-by-entry is not advantageous since 8KN >

3KN.

Comparing the fast CZT versus Goertzel complexities, the Goertzel algorithm

is preferred if 3KN < 20N log2 K+45N−K. When we neglect K at the right side

which is usually small relative to N, such a situation appears if

K <
20
3

log2 K +15. (12)

The breaking point here is approximately K = 53, regardless of length N!

Since in our case the intervals of interest are known with quite high precision,

we do not need more than 53 frequency points and therefore it is more advanta-

geous to choose the Goertzel algorithm.

3.4. Remarks

As Figure 1 shows, a typical beam oscillatory signal decays exponentially in

time. Therefore, one could suggest to involve the damping directly in the frequen-

cy analysis. In general, such situations would benefit from CZT which can be

defined for exponentially decaying signals [8]. In our case, however, we analyze

short time segments (1024 samples lasts for 38 ms), and during such short periods

the attenuation can be neglected. Moreover, the damping can be intercorporated

into the Goertzel algorithm easily and wit no additional cost, so in this point of

view, the analysis in section 3.3 remains correct.
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It also should be noted that the general definition of CZT no longer assumes

the complex kernel to lie on the unit circle as we have it in (9). The form of

CZT restricted to the unit circle is sometimes (but improperly) referred to as the

Fractional Fourier Transform (FrFT) [13].

4. Proposed method

In order to apply the Goertzel algorithm to compute the natural frequencies,

we first have to determine the intervals of interest for these frequencies. Recall

that the energy of the signal is concentrated in narrow spectral intervals, see Fig.

2.

Using the equation of motion for a prismatic beam [14], the first ten natural

frequencies of the undamaged beam were analytically calculated and they are giv-

en in the first column in Table 1. Afterwards, we have performed FEM (Finite

Element Method) simulations for 1000 positions of the damage on the analyzed

beam in order to determine the frequency intervals of interest, and the results are

included in Table 1. The third verification step consists in direct measurements

on the damaged beam on the locations where the amplitude for the ten modes

have maximum values or are null or where we encountered a point of inflection.

These results are also joined in the table. Using this information, we have tak-

en an extra-safe margin of 5% on both sides (low and up) in order to create the

frequency intervals which will be used further.

After this we focus on each particular interval of interest and we compute

several values lying within such interval using Goertzel algorithm. If we consider,

for example, the interval of interest for the sixth sinusoid, i.e. 306 to 385 Hz

obtained from columns two and three of Table 1 after applying the 5% margin,
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we have plotted in Fig. 5 the Goertzel values in this region of interest over the

time. The FFT moduli are also present in this picture to illustrate its inefficiency

in finding the position of the main lobe accurately.

As the last step a peak-picking technique is applied in order to find the fre-

quency with the maximum amplitude. Actually, the technique is very simple —

we take the maximum value independently in each time segment. In Fig. 6, we

present a plot of the progress in the peak-frequency values over time using mean

and median filters, respectively.

The resultant precise single frequency value per interval is computed by taking

median from the median series. The reason is that the median is more “robust”

to outliers which can possibly appear, especially when signal to noise ratio is

adverse.

The algorithm takes as input the vibration measurements of the analyzed beam

and it determines with priority the frequency intervals where the natural frequen-

cies would lie. Since we have performed already FEM simulation in 1000 possible

damaged points, and this results are stored in a database, the interest intervals are

directly identified. In order to fulfill the requirement of the Goertzel algorithm we

need to determine the sampling interval and the window size to match the range

of values. With all these prerequisites, the Goertzel computation could take place

in order to automatically obtain the set of ten natural frequencies.

The steps of the algorithm are summarized in Fig. 4.

5. Comparison with other identification methods

This section is devoted to comparing properties of different methods used for

identification of natural frequencies in cantilever beams. In paper [9], a systematic
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overview of the time-frequency methods used to extract the natural frequency of

cantilever beams was presented. The time-frequency transforms used in there to

extract the natural frequencies were the short-time Fourier transform, the Wigner

transform and the non-stationary Gabor transform. Furthermore, the spectra of

these time-frequency transforms was post-processed before the extraction of the

frequencies by means of two refinement procedures, namely the LASSO iteration

and the re-assignment technique. The extraction of the frequencies using wavelet-

based methods is described in detail in [4].

The comparison of the method with the results obtained with the FFT envelope

methods and time-frequency procedures in terms of accuracy of the detection is

given in Table 2.

It is easy to observe that the results obtained with the Goertzel algorithm are

overall deviated only with under 1%. We could obtain the same accuracy using

the FFT-envelope but this is time-consuming and heuristic as it consists of manual

tuning in order to find the integer periods.

6. Conclusion

The paper presented a non-invasive method for the identification of the natural

frequencies in cantilever beam. We have combined the extension of the Goertzel

to non-integer values and the knowledge about the intervals where the natural

frequencies of a known beam could be found in order to obtain a computational

efficient algorithm for the identification of these frequencies. We have compared

this extraction method with other frequency spectra or time-frequencies extraction

procedures in order to show advantages in computational complexity and accuracy

in obtaining the harmonics. We suggest to apply the procedures in conjunction
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with damage detection algorithms like e.g. [1], where such advantages could be

exploited.

Regarding the computational complexity, it might be interesting in the fu-

ture to consider joining the generalized Goertzel algorithm with the technique

described in [11]. This way the number of operation could be even lowered in

certain configurations.For real-time applications demanding very fast detection

times is would be worth to utilize the so-called sliding variant for Goertzel [6],

but the accuracy and robustness to noise would have to be evaluated thoroughly.

Should the precision be even increased, one can employ Goertzel in a “zoom

fashion”, i.e. after finding peak coarsely, apply Goertzel at a finer-resolution again.

If the speed is the main criterion, one can reduce the number of computations

by taking fewer frequency samples and apply some clever peak-picking technique

like the one noted in [13] based manipulation with the sinc function.
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Table 1: Comparison of the first ten natural frequencies (in Hz) obtained analytically and with

FEM and measurements for the extreme damaged cases. The table shows what is the frequency

for the undamaged state obtained analytically from the equation of the beam using the mechanical

characteristics and situates this undamaged states within the damaged case simulated via FEM and

measured, respectively.

Analytical FEM Measurements

Low Up Low Up

5.12 4.20 5.30 4.27 5.40

23.55 21.32 25.30 21.27 25.40

62.47 56.7 69.65 54.27 65.40

136.19 133.36 147.34 135.40 148.34

232.45 225.53 257.34 224.40 255.40

342.43 322.56 367.43 320.40 360.40

485.39 471.28 495.01 475.40 495.40

650.25 640.13 656.25 645.40 655.40

826.4 811.33 831.28 815.40 835.40

1035.4 1024.1 1067.82 1020.40 1055.40
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Figure 1: Plot of the cantilever beam signal in the time domain, zoomed at the right.
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Figure 2: Informative frequency plot over all time segments (FFT modulus). Rectangular window

with 1024 samples and half-window overlap was used for this coarse step. Significant contribu-

tions of the natural frequencies are visible.
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Table 2: Comparison of the first ten natural frequencies obtained using the Goertzel algorithm, the

time-frequency and wavelet methods.

Analytical Goertzel time-frequency wavelet-based

5.12 5.12 5.07 4.87

23.55 23.45 22.32 21.32

62.47 62.57 61.7 59.65

136.19 136.09 133.36 137.34

232.45 233.45 235.53 237.34

342.43 342.26 343.56 347.43

485.39 483.39 481.28 485.01

650.25 650.55 645.13 646.25

826.4 827.4 824.33 811.28

1035.4 1034.14 1034.1 1057.82
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Inputs: frequency “index” k ∈ R; signal x of length N

Output: y, representing X(ωk) according to eq. (4)

%Precalculation of constants

A = 2π
k
N

B = 2cosA

C = e−jA

D = e−j 2πk
N (N−1)

%State variables

s0 = 0

s1 = 0

s2 = 0

%Main loop

for i = 0 : N−2 %one iteration less than traditionally

s0 = x[i]+B · s1− s2

s2 = s1

s1 = s0

end

%Finalizing calculations

s0 = x[N−1]+B · s1− s2

y = s0− s1 ·C

y = y ·D %constant substituting the iteration N− 1, and correcting the

phase at the same time

Figure 3: Generalized Goertzel algorithm with shortened iteration loop. The changes, compared

to the standard Goertzel algorithm are marked in color.
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Inputs: Mechanical characteristics of the beam

Output: Natural frequencies of the beam

I. Load the recorded data

II. Compute the interest intervals using FEM

III. Determine the sampling interval

IV. Determine the window size in samples

V. Split the time samples in segments of interest

VI. Main Goertzel loop over the segments

VII. Determine the maximal value in each interval of interest

VIII. Determine a single such value per interval

Figure 4: Computing the natural frequencies using the generalized Goertzel algorithm
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