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Abstract—Reweighted `1 minimization has been successfully applied to
the task of audio declipping by Weinstein and Wakin (2011). We adapt the
reweighting to the audio inpainting problem, for both the synthesis and
the analysis models. It is shown that the reweighting provides a significant
improvement in terms of SNR, especially in the analysis model.

I. INTRODUCTION

In the past, the recovery of missing audio samples, i. e. the audio
inpainting problem has been addressed by different means. The
first sparsity-based method utilized the OMP greedy algorithm [1].
Another way of approximating the sparse prior was the convex
minimization (the so-called `1 relaxation), see for example [2].
Furthermore, this approach was applied to the closely related audio
declipping problem in [3], [4]. In [5], it was proposed that the
performance of the `1 relaxation might be enhanced by the so-called
reweighting. Since then, reweighted `1 methods found their use in
different areas of signal processing [6]–[8]

Sparsity-based formulation of audio inpainting with `1 relaxation,
i. e. using the (weighted) `1 norm, attains the form

arg minz ‖w � z‖1 s. t. Dz ∈ Γ, (1a)

arg minx ‖w �Ax‖1 s. t. x ∈ Γ, (1b)

where the formulations are referred to as the synthesis and analysis
variant, respectively. In (1), let D : CP → CN , P ≥ N be the
synthesis operator of a Parseval frame and let A = D∗ be its
analysis counterpart [9]. For audio inpainting, the set of feasible
solutions is the (convex) set Γ of signals that are equal to the reliable
parts of the observed signal. The vector w ∈ RP

+ is the vector
of (positive) weights and the symbol � denotes the element-wise
product. The bigger the weight assigned to a given coefficient, the
more it contributes to the objective function, therefore it is more
penalized in the minimization.

II. INPAINTING ALGORITHM

In [3], the synthesis variant of audio declipping with reweighted
`1 minimization was presented. The idea of reweighting is that the
restoration task is solved repeatedly, where each time, the `1 norm
is weighted differently, based on the inverted absolute values of the
coefficients from the previous solution. The benefit is that by such
a weighting, the significant coefficients are encouraged, while the
small coefficients are even more pushed towards zero, which leads
to a better approximation of sparsity, i. e. the `0 (pseudo)norm.

The described approach can be easily adapted to the task of audio
inpainting. The algorithm, as presented in [3], is shown in Alg. 1.
In the audio inpainting task, only the set of feasible solutions Γ is
different compared to the declipping case.

As the second contribution, we include reweighting into the anal-
ysis variant (1b), which was proposed in [5], but not presented in the
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application to audio declipping in [3]. The main difference to (1a)
is that the solution is the signal in time domain, thus to compute
the weights for subsequent iteration, it is necessary to perform one
additional analysis. The resulting algorithm is shown in Alg. 2.

Algorithm 1: Synthesis reweighted `1 audio inpainting [3]

require: D : CP → CN , Γ ⊂ CN , K, ε, δ > 0
1 k = 1, w

(1)
i = 1, i = 1, . . . , P

2 repeat
3 z(k) = arg minz ‖w(k) � z‖1 s. t. Dz ∈ Γ

4 w
(k)
i = 1/(|z(k)i |+ ε), i = 1, . . . , P

5 k ← k + 1

6 until k > K or ‖z(k) − z(k−1)‖2 < δ

7 return x = Dz(k−1)

Algorithm 2: Analysis reweighted `1 audio inpainting

require: D : CP → CN , A = D∗, Γ ⊂ CN , K, ε, δ > 0
1 k = 1, w

(1)
i = 1, i = 1, . . . , P

2 repeat
3 x(k) = arg minx ‖w(k) �Ax‖1 s. t. x ∈ Γ

4 z(k) = Ax(k)

5 w
(k)
i = 1/(|z(k)i |+ ε), i = 1, . . . , P

6 k ← k + 1

7 until k > K or ‖z(k) − z(k−1)‖2 < δ

8 return x(k−1)

III. EXPERIMENTS

A test set of 10 musical audio signals sampled at 44.1 kHz with
approximate length of 7 seconds was selected from the EBU SQAM
database [10] to be diverse in tonal character and sparsity with respect
to the used time-frequency transform (see Tab. I). For each test signal
and given length of the gaps between 5 and 50 ms, 10 gaps were
created and restored using Alg. 1 and 2. The particular inpainting
problems for fixed weights—step 3 in both algorithms—were solved
by proximal algorithms: the Douglas-Rachford [11] and Chambolle-
Pock [12] for the synthesis and analysis variants, respectively.

The results were evaluated with the common signal-to-noise ratio
(SNR) [1]. Average values from all music samples for given gap
lengths are shown in Fig. 1. It can be seen that the reweighting
in synthesis model provides consistent, but not quite significant
improvement. The analysis model with reweighting, on the other
hand, outperforms the simple model significantly for gaps larger than
10 ms. The statistical significance is illustrated by bootstrap 95%
confidence intervals [16] in Fig. 2.

IV. CONCLUSION

This work demonstrates the utilization of the reweighted `1 norm
for audio inpainting. It is shown that when reweighting is combined
with the analysis model, a significant improvement of the reconstruc-
tion quality in terms of the SNR is observed.



TABLE I: Algorithm settings for the experiment

parameter value
transform DGT [13]
window type Hann
window length 2800 (64 ms)
window shift 700 (16 ms)
frequency channels 2800
K 10
ε 0.001
δ 0.01

Fig. 1: Values of SNR computed for each of the restored gaps
and then averaged in dB. For the `1 synthesis and the analysis
model, single realizations of Douglas-Rachford and Chambolle-Pock
algorithms (with no weighting) are used as a reference, respectively.
These algorithms, both as a reference and as part of the reweighted
approach, were limited to 1 000 iterations, or stopped by relative
change of the norm of the main variable in subsequent iterations lower
than 10−4. Furthermore, the results are compared to SPAIN [14] and
Janssen algorithm based on linear prediction [15], both applied frame-
wise with window parameters according to Tab. I.
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