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Abstract. Perfusion magnetic resonance imaging is a technique used in
diagnostics and evaluation of therapy response, where the quantification
is done by analyzing the perfusion curves. Perfusion- and permeability-
related tissue parameters can be obtained using advanced pharmacoki-
netic models, but, these models require high spatial and temporal res-
olution of the acquisition simultaneously. The resolution is usually in-
creased by means of compressed sensing: the acquisition is accelerated
by under-sampling. However, these techniques need to be improved to
achieve higher spatial resolution and/or to allow multislice acquisition.
We propose a modification of the L+S model for the reconstruction of
perfusion curves from the under-sampled data. This model assumes that
perfusion data can be modelled as a superposition of locally low-rank
data and data that are sparse in the spectral domain. We show that our
model leads to a better performance compared to the other methods.

Keywords: perfusion, MRI, DCE-MRI, compressed sensing, sparsity,
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1 Introduction

Perfusion magnetic resonance imaging (MRI), more specifically the dynamic
contrast enhanced MRI (DCE-MRI) [1–4], is nowadays a promising method for
medical diagnosis and evaluation of therapy response. Using perfusion MRI, on-
cological and cardiovascular diseases can be diagnosed and their effective treat-
ment can be monitored. In perfusion MRI, a suitable contrast agent is admin-
istered intravenously. Due to the cardiovascular system, the contrast agent is
distributed within the organism and its temporal and spatial distribution can
be observed and analyzed. The time dependency of contrast agent concentration
in a region of interest is called perfusion curve(s). The tissue-specific perfusion
parameters, necessary for the diagnosis, are estimated from the perfusion curves
by approximation using a pharmacokinetic model.

The usual pharmacokinetic models in use are the Tofts and the extended
Tofts models [5], which only allow estimating of a limited number of perfusion
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parameters. To allow estimating of additional highly relevant perfusion param-
eters such as the blood flow and vessel permeability, more complex models need
to be used [5]. However, successful application of such models assumes high tem-
poral resolution of the acquisition to capture the vascular-distribution phase of
the contrast agent. These requirements substantially limit the achievable spa-
tial resolution of the data acquired or the ability to acquire multiple slices (i.e.
perfusion curves in 3D volume). Using the classic (Nyquist-rate) acquisition in
MRI, it is impossible for both resolutions to be high at the same time.

Therefore, much effort is devoted to using compressed sensing (CS) in MRI. In
MRI, the images are acquired in their Fourier domain (also termed k-space). CS
comes into play naturally by under-sampling of the k-space (sampling below the
Nyquist rate). The k-space sampling trajectories used include: cartesian sampling
[6], radial sampling [7] (including the flexible golden-angle technique [8]) and
spiral trajectories [9].

Good quality of reconstruction is strongly dependent on good a priori knowl-
edge of the signal. Many CS reconstruction techniques applied to DCE-MRI use
basic formulations of single priors, like the total variation (TV) in the spatial [8]
or the temporal [10] domain or the wavelet transform in the spatial and/or the
temporal domains [6]. The assumption that different tissues have different but
consistent perfusion characteristics is usually mathematically described by the
low-rank property of the so-called Casorati matrix, which is an image sequence
reshaped such that each image in time forms a column vector [11, 12].

More sophisticated approaches in DCE-MRI combine several priors. Article
[13] assumes that the Casorati matrix is low-rank and sparse in the spectral
domain (row-by-row spectra). A more efficient approach [14] regards the data
as the sum of a low-rank component and a component sparse in the spectral
domain (L+S model). Superior results have been achieved by regularization via
low-rank penalty block-by-block, like in [15, 16].

In the present article, we propose to use the sum of locally low-rank matrix
and a component which is sparse in the spectral domain (local L+S model)
instead of the (global) L+S model in [14]. We show that we can achieve better
signal-to-noise ratio (SNR) with our local L+S model than when using global
L+S model. We compare this approach with a model using locally low-rank and
component sparse in the spectral domain simultaneously (locally L&S model) as
presented in [16].

2 Materials and methods

To work with perfusion data, image sequences are reformatted to the so-called
Casorati matrix [11], where each column of this matrix represents a single image
in one temporal phase. Such a matrix is used in all models mentioned below.

2.1 Locally low-rank and sparse matrix model (local L&S model)

The locally L&S model [16] utilizes the fact that perfusion curves have similar
time courses in some space regions and have a sparse row spectrum. The similar
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time-dependency of perfusion curves in each tissue of desired data reconstruction
M is enforced by assuming a low rank of non-overlapping blocks of matrix M
(with a few non-zero singular values in each block) and a sparse row spectrum
with a few non-zero elements. Matrix M is of size N1N2 × Nf, where N1, N2

represent the size of each image/frame and Nf is their overall number. The
reconstruction can be achieved by solving the following convex optimization
problem:

min
M

1

2
‖EM− d‖2F + λL

Nb∑
i=1

‖BiM‖∗ + λS ‖TM‖1 , (1)

where T is the operator of 1D Fourier transform applied to the matrix rows,
E is the under-sampled 2D Fourier transform for each image (representing the
measurement process), d is the under-sampled (acquired) data in k-space, and
λL, λS are suitable regularization parameters. Bi is an operator choosing the
block i out of the entire matrix, and Nb is the number of blocks. The quadratic
term is the data fidelity term, ‖M‖∗ is the nuclear norm, which is the sum of
singular values of M (enforces low-rank), and ‖TM‖1 is the `1-norm, which is
the sum of absolute values of entries in TM (enforces sparsity of perfusion curves
in the Fourier domain).

2.2 Low-rank and sparse matrix decomposition (global L+S model)

In the context of perfusion MRI, Low-Rank and Sparse Matrix Decomposition
(L+S model) was first introduced in [14]. Unlike the L&S model (either local
or global), which aims at promoting low-rank and spectral-domain sparsity of
the solution simultaneously, the L+S model aims to compose the desired re-
construction matrix as a sum of low-rank matrix L and matrix S with sparse
row spectrum, i.e. in this model the desired reconstruction is M = L + S. This
decomposition can be obtained by solving the following convex problem:

min
L,S

1

2
‖E(L + S)− d‖2F + λL ‖L‖∗ + λS ‖TS‖1 . (2)

2.3 Locally low-rank and sparse matrix decomposition (local L+S
model)

In [15, 16], the locally low-rank constraint is used instead of the (global) low-
rank and it can improve the quality of desired reconstruction data if applied to
areas with similar perfusion curves. We propose using this locally low-rank prior
in the previously introduced L+S model instead of using the global low-rank of
matrix L. The local L+S model can be formulated as

min
L,S

1

2
‖E(L + S)− d‖2F + λL

Nb∑
i=1

‖BiL‖∗ + λS ‖TS‖1 . (3)

A crucial question is choosing the appropriate size of the blocks in order to
capture areas with similar perfusion parameters and improve the reconstruction
as will be shown in the following.
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3 Experimental results

3.1 Perfusion phantom

For the purpose of simulation, we have created a perfusion phantom using Mat-
lab. We have utilized the modified Shepp-Logan phantom [17], which simulates
a brain slice, see Fig. 1. We use a perfusion phantom of 100× 100 px × 100 time
points in size. The perfusion curves assigned to clearly separated areas of the
phantom share the same behaviour in time, following the log-normal model [3].
At every time instant, the k-space values have been perturbed by additive Gaus-
sian noise with a standard deviation of 0.05 to simulate the measurement noise.
This model is simplified but it allows us to accurately compare the behaviour of
methods.

To capture perfusion data, we use radial trajectories, where random slopes
of halflines starting at the origin of k-space are used independently for each time
frame.

Fig. 1. Single temporal frame of perfusion phantom (arrows mark areas in which re-
construction of perfusion parameters using different methods is further compared).

3.2 Under-sampled perfusion data reconstruction

For under-sampled perfusion-phantom data, three types of reconstruction were
performed, based on: local L&S model (1), global L+S model (2) and local L+S
model (3). The respective optimization problems were solved using the proximal
gradient method [18]. Non-overlapping square blocks of different sizes were used
for local methods. The parameters λL, λS were empirically chosen (dependent
on the method used, size of blocks and resolution, see Figs 2 and 3) such that
the reconstruction gave the highest possible SNR. In all cases, algorithms were
stopped when the relative change in the solution was less than 10−5.

Reconstructions of perfusion curves were compared for the global and local
L+S models, using different sizes of the blocks and different percentages of mea-
sured coefficients, see Fig. 2. Partitioning into blocks brought an increase in the



5

22 

24 

26 

28 

30 

32 

34 

0 10 20 30 40 50 60 70 80 90 

SN
R

 [
d

B
] 

Measured coefficients [%] 

block 5 × 5 

block 10 × 10 

block 15 × 15 

block 20 × 20 

entire image 

λL       λS 

0.5  0.8 

0.7  0.8 

0.8  0.8 

1     0.8 

4     0.7 

Fig. 2. Comparison of global and local L+S models — dependency of SNR on percent-
age of measured coefficients.

SNR. It can be seen that block size affects the reconstruction quality. The opti-
mal block size depends on the contents of the image used — better performance
is achieved for blocks small enough to include only a tissue with similar perfu-
sion parameters but large enough to regularize sufficient area. For the perfusion
phantom, the optimal block sizes were 10× 10 and 15× 15, the latter valid for
the strongly under-sampled acquisition.

A comparison of the local L+S model (for an optimal block size of 10× 10)
and the local L&S model for various block sizes is shown in Fig. 3. It can be seen
that the local L+S model has even a better SNR than when using the optimal
block size (10× 10 or 15× 15) in the local L&S model.

In Fig. 4, the reconstructed perfusion curves (from 35 % of coefficients) in
different regions (marked by red arrows in Fig. 1) are compared for global and
local L+S model (with the reference perfusion phantom curves), local L+S model
and local L&S model respectively. Usually, the local L+S model better follows
the shape of perfusion curves but it is smoother than in the case of the global
L+S model and local L&S model. Notice also that non-perfused tissue (Fig. 4(c))
is also better approximated by the local L+S model than by the others.

To have an idea of the speed of convergence, the reconstruction from 35 % of
measured coefficients, using blocks 10×10, takes about 24 iterations (30 s) using
the L&S model, and 163 iterations (105 s) using the L+S model. The local L+S
converges faster than the global L+S model because the SVD (singular value
decompositon) is computed on much smaller matrices.
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Fig. 3. Comparison of local L+S model and local L&S models — dependency of SNR
on percentage of measured coefficients.

4 Conclusion

The use of advanced pharmacokinetic models in magnetic resonance perfusion
imaging is a promising method that allows estimating of additional highly rele-
vant perfusion parameters. However, it requires high spatio-temporal resolution,
which is not possible when using the classic acquisition in MRI. The article pro-
poses using a local L+S model to reconstruct under-sampled perfusion data. The
results obtained on a perfusion phantom indicate that the proposed local L+S
model recovers more accurate perfusion curves than the global L+S model and
the local L&S model, even in the highly under-sampled regime.
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Fig. 4. Reconstruction of perfusion curves (from 35 % of the Fourier coefficients) in
different regions (marked by red arrows in Fig. 1) using global and local L+S model
(left) and local L+S and local L&S model (right), the last pair represents non-perfused
tissue (the blue line, i.e. the original curve, is hidden under the red line, representing
the local L+S model).
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