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Abstract 

Purpose: The Tofts and the extended Tofts models are the pharmacokinetic models commonly used in DCE-

MRI perfusion analysis, although they do not provide two important biological markers, namely the plasma 

flow and the permeability-surface area product. Estimates of such markers are possible using advanced 

pharmacokinetic models describing the vascular distribution phase, such as the tissue homogeneity model. 

However, the disadvantage of the advanced models lies in biased and uncertain estimates, especially when 

the estimates are computed voxel-wise. The goal of this work is to improve the reliability of the estimates 

by including information from neighboring voxels. 

Theory and Methods: Information from the neighboring voxels is incorporated in the estimation process 

through spatial regularization in the form of total variation. The spatial regularization is applied on five 

maps of perfusion parameters estimated using the tissue homogeneity model. Since the total variation is not 

differentiable, two proximal techniques of convex optimization are used to numerically solve the problem. 

Results: The proposed algorithm helps to reduce noise in the estimated perfusion-parameter maps together 

with improved accuracy of the estimates. These conclusions are proved using a numerical phantom. In 

addition, experiments on real data show improved spatial consistency and readability of perfusion maps 

without considerable lowering the quality of fits. 

Conclusion: The reliability of the DCE-MRI perfusion analysis using the tissue homogeneity model can be 

improved by employing spatial regularization. The proposed utilization of modern optimization techniques 

implies only slightly higher computational costs compared to the standard approach without spatial 

regularization. 

Keywords 

DCE-MRI, perfusion parameter estimation, spatial regularization, tissue homogeneity model, proximal 

methods, total variation  
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1 INTRODUCTION 
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is becoming an established tool in 

obtaining information about tissue perfusion and capillary permeability. The trend today is to represent such 

information as a set of images/maps of physiological parameters related to the perfusion as for example 

blood plasma flow, permeability surface area product and plasma or extracellular-extravascular-space 

volumes. The type and number of the parameters represented by perfusion maps depend on the 

pharmacokinetic model used. To estimate the perfusion parameters, the respective model is typically fitted 

to the concentration-time curve of each voxel. These curves are calculated from a T1-weighted MR image 

sequence recorded before, during and after administration of a contrast agent bolus (1). 

The problem of fitting the concentration-time curves is unfortunately a nontrivial optimization problem due 

to the model nonlinearity, insufficient temporal sampling, poor signal-to-noise ratio and uncertainties in the 

model and the measurement. This results in bias and uncertainty in the estimates or even wrong estimates 

because of the presence of local minima. The estimation problems are often categorized as a priori structural 

identifiability and a posteriori identifiability. The a priori identifiability is influenced by the nonlinear model 

structure itself (2–4) and by the experimental design – sampling and duration of the experiment (5–10). The 

a posteriori identifiability includes the errors in the measurement – the signal-to-noise ratio, arterial input 

function errors and the inaccuracy of conversion from the T1-weighted image sequence to the concentration-

time curves (10–14). Additionally, the local minima may also be caused by an improper discretization of 

the model (15–17). 

One way to reduce the uncertainties caused by errors is an incorporation of a spatial prior into the modeling. 

Such a means of regularization is based on the assumption that neighboring voxels in the parameter maps 

belonging to the same tissue should have similar values, i.e. the perfusion maps should be piecewise smooth. 

Although using spatial priors is usual in image reconstructions including MRI, they have been used only 

occasionally in the DCE-MRI analysis. To the authors’ knowledge, it has been used only by few groups 

(18–21); (22); (23); (24). The priors in the mentioned papers are based on image gradients of perfusion maps 

except for (24) using a wavelet transform and (23) using the difference of the image from its denoised 

variant. The denoising is guided by the input DCE-MRI sequence. All three mentioned transformations 

generate so-called feature images on which a metric is computed to express, by one value, the spatial 

consistency of the voxels. The used metrics range from the smoothing ℓ2 norm (18,20); (22); (23) to an 

approximation of the edge-preserving ℓ1 norm (22); (24). The minimization of these spatial-regularization 

criterial functions is problematic because the voxels cannot be processed independently as in the case 

without the regularization. 
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Compared to (22,24) where an approximate ℓ1 norm was used, in the present paper we derive a solution to 

the strict sparsity-inducing ℓ1 norm regularizer operating on image gradients, i.e. the total variation 

regularization. This reduces smoothing of edges between different tissues. Since the strict ℓ1 norm is not 

differentiable, we use proximal algorithms (25–27) to find the numerical solution. They are based on 

alternating minimization of the data and regularization terms and are the state of the art for solving image-

processing problems such as image denoising, deconvolution or MRI reconstruction. However, the 

adaptation of these algorithms to DCE-MRI is not straightforward, because the data formation model in 

DCE-MRI is not linear. Motivated by good performance of the Levenberg-Marquardt method (LM) (28,29) 

in DCE-MRI perfusion parameter estimation (30,31), we decided to use the proximal Newton method (26) 

adapted to use the LM keeping good convergence and low computational costs. The derived algorithm 

iteratively performs one step of the LM method in each voxel followed by an image denoising step in all 

parameter maps. 

All the above spatial regularization approaches are based on the Tofts (32) or extended Tofts (33) models. 

On the contrary, this paper proposes a spatial regularization for DCE-MRI based on the tissue homogeneity 

(TH) pharmacokinetic model (16,34). Use of the TH model provides estimates of additional perfusion 

parameters such as the plasma flow and the permeability surface area product, as opposed to the use of the 

Tofts models, but its use is not widespread because of its complexity (number of parameters, nonlinearity, 

a posteriori identifiability). In this paper we show that spatial regularization stabilizes the estimation 

procedure and makes use of such more complicated pharmacokinetic models feasible. 

2 THEORY 

2.1 PROBLEM DESCRIPTION 
The goal of the DCE-MRI analysis is to estimate perfusion parameters from a sequence of 𝑁 images 

capturing the distribution of the administered contrast agent bolus in time. The image intensity values are 

related to the actual concentration of the contrast agent in the voxel. The voxels from a region of interest are 

extracted and rearranged to form a matrix 𝐒 of size 𝐼 × 𝑁 (number of selected voxels × number of 

observations in time). The values in 𝐒 can be described by the model 

𝑆𝑖,𝑛 = 𝑆𝑖̅,𝑛 + 𝜖𝑖,𝑛 ,   𝑖 = 0, … , 𝐼 − 1, 𝑛 = 0, … , 𝑁 − 1;  𝜖𝑖,𝑛~𝑅𝑖𝑐𝑒(𝑆𝑖̅,𝑛, 𝜎R), [1] 

where 𝑆𝑖,𝑛 is a single measured element of 𝐒 (𝑖𝑡ℎ voxel, 𝑛𝑡ℎ time sample) and 𝑆𝑖̅,𝑛 is the true value, not 

distorted by the noise 𝜖𝑖,𝑛. The noise follows the signal-dependent Rice distribution (35), assuming Cartesian 

imaging for simplicity. 
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The intensity values 𝐒 are transformed to represent concentration of the contrast agent 𝐒𝜙: 

𝑆𝑖,𝑛
𝜙

= 𝜙𝑖(𝑆𝑖,𝑛) ≈ 𝑆𝑖̅,𝑛
𝜙

+ 𝜖𝑖,𝑛
𝜙

,  ∀𝑖, 𝑛, [2] 

where 𝜙𝑖 is a non-linear transformation function derived from the pre-contrast measurements (e.g. with 

several different flip angles) (1), thus the additive-noise model is not exact. The values 𝑆̅
𝑖,𝑛
𝜙

 can be modeled 

as samples of a nonlinear pharmacokinetic model 𝑐(𝑛Δ𝑡, 𝑝𝑖,⋅). It describes the contrast agent concentration 

within voxel 𝑖 in time 𝑡 = 𝑛Δ𝑡, Δ𝑡 is the sampling interval, and it is parametrized by the vector 𝑝𝑖,⋅ of length 

𝐽, consisting of the perfusion parameters. A consequence of the transformation 𝜙𝑖 is that the noise 𝜖𝑖,𝑛
𝜙

 now 

follows a complicated distribution. Thus, it is usually approximated by normal distribution, i.e. 

𝜖𝑖,𝑛
𝜙

~𝑁(0, 𝜎𝑖), ∀𝑛, 𝜎𝑖 is noise standard deviation in voxel 𝑖, which neglects variations in time and asymmetry 

(in case of low signal-to-noise ratios (SNR<10 dB) (36,37) or for strongly nonlinear 𝜙𝑖). 

The goal of the DCE-MRI analysis is to estimate parameters 𝑝𝑖,⋅ of the pharmacokinetic model 𝑐 by fitting 

it to the curve 𝑆𝑖,⋅
𝜙

 in each voxel 𝑖. Let 𝐩 denote the matrix gathering the perfusion parameters such that 𝑝𝑖,⋅ 

is the 𝑖𝑡ℎ row of 𝐩. The maximum a posteriori probability (MAP) estimate 𝐩̂ of the perfusion parameters 𝐩 

of the size 𝐼 × 𝐽 (𝐼 – number of voxels, 𝐽 – number of perfusion parameters), assuming Gaussian noise, can 

be formulated as: 

𝐩 = arg min
𝐩∈𝑃𝐼

∑ 𝜎𝑖
−2 ∑ (𝑆𝑖,𝑛

𝜙
− 𝑐(𝑛Δ𝑡, 𝑝𝑖,⋅))

2
𝑁−1

𝑛=0

𝐼−1

𝑖=0

+ 𝜓(𝐩) = arg min
𝐩∈𝑃𝐼

∑ 𝑓(𝑝𝑖,⋅)

𝐼−1

𝑖=0

+ 𝜓(𝐩) [3] 

where 𝑃 is the feasible domain of the perfusion parameters. The regularization term 𝜓(𝐩) describes the 

a priori knowledge about the problem and the first term, i.e. the data term, describes the fidelity of the fit. If 

no prior information is known or available in a suitable form, 𝜓 is substituted by a zero function making the 

optimization problem to reduce to the standard nonlinear least squares problem, solvable by minimizing 

𝑓(𝑝𝑖,⋅) independently for each voxel (11,38). 

2.2 PHARMACOKINETIC MODEL 
The core of the functional [3] is a pharmacokinetic model 𝑐 defined in general by a set of differential 

equations. This model can be transformed to the Laplace domain, where it has the form of multiplication of 

the Laplace spectra of two functions: the arterial input function (AIF) describing concentration of the 

contrast agent in voxel’s arterial input and the impulse residue function (IRF) of the tissue voxel. If both 

functions have a closed-form expression in the time domain, the model can also be represented in the time 

domain, either as a convolution integral or even better in a closed form (15). If the closed forms are not 

available, as in our case of the TH model, the multiplication in the Laplace domain can be transformed to 
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the Fourier domain (16). In a discrete setting, the Laplace operator 𝑠 is substituted by the sampling at discrete 

angular frequencies jΔ𝜔𝒘, where Δ𝜔 is the sampling angular frequency, 𝒘 is a vector of indices; and the 

model is evaluated as: 

𝑐(𝒏Δ𝑡, 𝑝𝑖,⋅) = DFT−1{𝐶a(jΔ𝜔𝒘)𝐻(jΔ𝜔𝒘, 𝑝𝑖,⋅)} [4] 

where the multiplication of the Fourier spectra of the AIF and IRF, is element-wise and DFT−1 is the inverse 

discrete Fourier transform (DFT). The symbol 𝒏 represents a vector of time indices meaning that the DFT 

returns 𝑁 values. The vector of frequency indices is 𝒘 = (0,1, … , (𝑁′ − mod(𝑁′, 2)) 2⁄ ), where mod is 

the modulo operation and 𝑁′ is the number of time-domain samples that guarantee avoidance of the time-

domain aliasing, see (16,39). The sampling angular frequency is then Δ𝜔 = 2𝜋 ∕ 𝑁′Δ𝑡. To use the defined 

representations of the functions, the DFT−1 includes complex conjugate symmetrization and final truncation 

to 𝑁 samples. Additionally, we assume that the AIF is represented as a vector of time-domain samples 

𝑐a(𝒏Δ𝑡) which are transformed to the Fourier domain: 𝐶a(jΔ𝜔𝒘) = DFT{𝑐a(𝒏Δ𝑡)} as in (16) with zero-

padding to 𝑁′ and the truncation to the half-spectrum. The IRF is represented by the TH model in the Laplace 

domain, 𝐻TH (𝑠, 𝒑), with a modified parametrization compared to (16,40): 𝒑 = {𝐹p, 𝑇c, 𝑇e, 𝛼, 𝜏} where we 

included 𝜏 as the bolus arrival time (see Table 2 for descriptions). An additional modification is that we use 

a windowed version of the TH model, 𝐻TH 
w (𝑠, 𝒑, 𝑡w). This speeds up the evaluation keeping the number of 

samples low, 𝑁′ = 3𝑁, limited by the time-domain aliasing, see (39) for more details. The TH model is 

evaluated as: 

𝐻TH (𝑠, 𝒑) =
𝐹p(1 − e−(𝛼+𝑇c𝑠))(𝑇c + 𝛼𝑇e + 𝑇c𝑇e𝑠)(𝛼 + 𝑇c𝑠)

𝛼(1 − e−(𝛼+𝑇c𝑠)) + 𝑠(𝑇c + 𝛼𝑇e + 𝑇c𝑇𝑒𝑠)(𝛼 + 𝑇c𝑠)

𝐻TH 
w (𝑠, 𝒑, 𝑡w) = ℎTH (𝑠, 𝒑) − 𝐹p𝐸 e−𝑘ep(𝑡w−𝜏−𝑇c) e−𝑠𝑡w

𝑠 + 𝑘ep

 [5] 

where 𝐸 = 1 − e−𝛼, 𝑘ep = 𝐸 (𝑇e𝛼)⁄  and 𝑡𝑤 = (𝑁 − 1)Δ𝑡. 

2.3 REGULARIZATION FUNCTION 
The stabilizing factor in [3] is the regularization function 𝜓(𝐩). Here, we describe the prior knowledge in 

the form of an image prior taking spatial relations of the voxels into account. The image prior in the form 

of a sparsifying ℓ1 norm of a linearly transformed image is a widely used option in image and signal 

processing community (27,41,42). The transformation can be e.g. a wavelet transform or image gradients. 

It is in the form of a linear operator 𝐀 transforming the vector of parameters, 𝑝⋅,𝑗, of the length 𝐼 to a domain, 

where most of the values are close to zero. This so-called sparsifying transform 𝐀 can be represented by a 

set of 𝑉 matrices 𝐀𝑣 , 𝑣 ∈ {1, … , 𝑉} each corresponding to one sparse feature. We suppose the case of the 

image gradients, i.e. there are two matrices 𝐀 = (𝛁r, 𝛁c) representing forward differences with respect to 

rows and columns and taking into account the spatial position of the voxels (43). Applying this operator, a 
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vector field is obtained. Before the application of ℓ1 norm usually a magnitude of this vector field is 

computed (represented by | ⋅ |). This is repeated for 𝐽 perfusion parameters leading to: 

𝜓(𝐩) = ∑ 𝛾𝑗‖|𝐀𝑝⋅,𝑗|‖
1

𝐽−1

𝑗=0

= ∑ 𝛾𝑗 ∑ √∑|𝐀𝑣𝑝⋅,𝑗|
2

𝑣

𝐼−1

𝑖=0

𝐽−1

𝑗=0

= ∑ 𝛾𝑗 ∑ √(𝛁r𝑝⋅,𝑗)
2

  + (𝛁c𝑝⋅,𝑗)
2

𝐼−1

𝑖=0

𝐽−1

𝑗=0

 [6] 

where 𝛾𝑗 is a regularization weight for particular parameter 𝑝⋅,𝑗. The magnitude in the middle term reduces 

to elementwise absolute value and the square and the square root act elementwise. The last term represents 

the discrete isotropic total variation regularization used in this paper. 

2.4 OPTIMIZATION METHODS 
For the spatially regularized estimation of the perfusion maps, we use two proximal optimization methods, 

the proximal Newton method (26) and the primal-dual algorithm (27). Both methods are applicable to the 

class of problems of the form 

arg min
𝒙

𝑑(𝒙) + 𝑟(𝐀𝒙) [7] 

where 𝑑, 𝑟 are convex lower-semicontinuous, not necessarily differentiable functions. In our case, 𝑑 and 𝑟 

represent the data and regularization terms, respectively. 𝐀 is an arbitrary linear operator possibly in matrix 

form.  

2.4.1 PROXIMAL NEWTON METHOD 

The proximal Newton method (26) is a variant of the Newton method (28,29) for non-differentiable 

functions applicable for functions in the form of [7] if 𝑑 is twice differentiable. Similarly to the Newton 

method, it exploits the Hessian of 𝑑, which improves the convergence of the algorithm. Since 𝑟 is typically 

not differentiable, its gradient is replaced by the so-called proximal operator, a useful tool proximal methods 

use to treat non-differentiable functions. 

The proximal operator of an arbitrary convex function 𝑓(𝒙) can be defined (44) as: 

prox𝑓
𝚲(𝒚) = arg min

𝒙
 (𝑓(𝒙) + (𝒙 − 𝒚)⊤𝚲−𝟏(𝒙 − 𝒚)) [8] 

where 𝒚 is a point at which the proximal operator is evaluated and 𝚲 is called the scaling matrix. Note that 

in majority of the literature, 𝚲 is the identity matrix. In the proximal Newton method, 𝚲 is necessary to 

compensate for the scaling implied by the Hessian in the Newton step. 

The proximal Newton method iteratively performs two steps until convergence: 

1) Do a Newton step in 𝑑, where ∇𝑑 and 𝐇 are the gradient and Hessian of 𝑑: 

𝒚𝑘 = 𝒙𝑘 − 𝐇−1∇𝑑(𝒙𝑘) [9] 
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2) Evaluate the proximal operator of 𝑟(𝐀𝒙) at the point 𝒚𝑘 scaled by 𝐇−1: 

𝒙𝑘+1 = prox𝑟(𝐀 ⋅)
𝐇−1

 (𝒚𝑘) = arg min
𝒙

 (𝑟(𝐀𝒙) +
1

2
(𝒙 − 𝒚𝑘)⊤𝐇 (𝒙 − 𝒚𝑘) ) [10] 

Since this sub-problem 2) is solved in every iteration, it must be done efficiently. It resembles [7], but 𝑑 is 

now much simpler – a quadratic function. This case can be again computed by a proximal method, e.g. by 

the nested primal-dual algorithm (27) described in the next section. Let us note that in case of a non-convex 

𝑑, as in our case, the proximal Newton method converges to the closest minimum (45,46), if the 

minimization steps are not too large. 

2.4.2 PRIMAL-DUAL ALGORITHM 

Another proximal method for solving problems in the form [7] is the primal-dual algorithm (27), especially 

suitable for quadratic 𝑑. The algorithm is initialized by choosing constants influencing the convergence: 

𝜏, 𝜎 > 0, 𝜃 ∈ [0,1], setting starting-point variables: 𝒖0 = 𝒚𝑘 , 𝒗0 = 𝐀𝒖0, 𝒙0 = 𝒖0, and proceeds by iterative 

updates until convergence (27): 

a) 𝒗𝑛+1 = prox𝑟∗
𝜎 (𝒗𝑛 + 𝜎𝐀𝒙𝑛) 

b) 𝒖𝑛+1 = prox𝑑
𝜏 (𝒖𝑛 − 𝜏𝐀∗𝒗𝑛+1) 

c) 𝒙𝑛+1 = 𝒖𝑛+1 + 𝜃(𝒖𝑛+1 − 𝒖𝑛) 

d)  Repeat a) – c) until convergence 

[11] 

Here, 𝑟∗ is the convex conjugate (25) of 𝑟 and 𝐀∗ is the adjoint operator to 𝐀; see [22] for details in case of 

the total variation. 

2.5 ESTIMATION OF PERFUSION PARAMETERS 
The final goal is to estimate perfusion parameter maps, i.e. to minimize [3] using total variation 

regularization [6]: 

𝐩 = arg min
𝐩∈𝑃𝐼

∑ 𝑓(𝑝𝑖,⋅)

𝐼−1

𝑖=0

+ ∑ 𝛾𝑗‖|𝐀𝑝⋅,𝑗|‖
1

𝐽−1

𝑗=0

  [12] 

This problem is solved by the proximal Newton method (Sec. 2.4.1). Unfortunately, the computation of the 

Hessian matrices 𝐇𝑖 of the data term 𝑓(𝑝𝑖,⋅) for each curve 𝑖  is computationally demanding and their 

inversions are unstable. For this reason we replace them by the Levenberg-Marquardt modification (29): 

𝐇𝑖 = 1 𝜆𝑖
𝑘⁄ 𝐈 + 2𝐉𝑖

⊤𝜎𝑖
−2𝐉𝑖, where 𝜆𝑖

𝑘 is related to the step length in the iteration 𝑘 and 𝐉𝑖 is the Jacobian matrix 

of 𝑐(𝒏𝑇s, 𝑝̂𝑖,⋅
𝑘 ) of the size 𝑁 × 𝐽. Then, the proximal Newton method has the form: 

1) Do a Newton (Levenberg-Marquardt) step [9] in terms of 𝑓(𝑝̂𝑖,⋅
𝑘 ) for each voxel: 
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𝑦𝑖,⋅
𝑘 = 𝑝̂𝑖,⋅

𝑘 − 𝐇𝑖
−1∇𝑓(𝑝̂𝑖,⋅

𝑘 ) ≅ 𝑝̂𝑖,⋅
𝑘 − 𝜆𝑖

𝑘(𝐈 + 𝜆𝑖
𝑘2𝐉𝑖

⊤𝜎𝑖
−2𝐉𝑖)

−1
∇𝑓(𝑝̂𝑖,⋅

𝑘 ), ∀𝑖, [13] 

where 𝜆𝑖
𝑘 is estimated by the LM scheme according to (29). 

2) Evaluate the scaled proximal operator [10] of the regularization function in [12]: 

𝐩𝑘+1 = arg min
𝐩∈𝑃𝐼

 (∑ 𝛾𝑗‖|𝐀𝑝⋅,𝑗|‖
1

𝐽−1

𝑗=0

+
1

2
∑(𝑝𝑖,⋅ − 𝑦𝑖,⋅

𝑘 )𝐇𝑖(𝑝𝑖,⋅ − 𝑦𝑖,⋅
𝑘 )

⊤
𝐼−1

𝑖=0

) , where

𝐇𝑖 = (𝜆𝑖
𝑘)

−1
(𝐈 + 𝜆𝑖

𝑘2𝐉𝑖
⊤𝜎𝑖

−2𝐉𝑖), ∀𝑖.

 [14] 

The resulting functional [14] is minimized using the primal-dual algorithm [11]. After initialization 

of the starting point 𝐮0 = 𝐲𝑘, 𝑣⋅,𝑗
0 = 𝛾𝑗𝐀𝑢⋅,𝑗

0  ∀𝑗, 𝐱0 = 𝐮0 and setting the constants 𝜏, 𝜃;  𝜎 ≤
1

8𝜏
 (valid 

for the operator of forward differences [6]), the algorithm iterates through the following steps: 

a) Evaluate the proximal operator [11] of the convex conjugate of the regularization function 

in the form of 𝑟(𝒙) = ‖|𝐀𝒙|‖1. This is well known in image reconstruction problems and the 

required proximal operator of its convex conjugate gets the form of a projection onto unit ball (27): 

𝑣⋅,𝑗
𝑛+1 =

𝑣⋅,𝑗
𝑛 + 𝜎𝛾𝑗𝐀𝑥⋅,𝑗

𝑛

max(1, |𝑣⋅,𝑗
𝑛 + 𝜎𝛾𝑗𝐀𝑥⋅,𝑗

𝑛 |)
, ∀𝑗 [15] 

i.e. the vector field is in each point divided by either its magnitude or by unity. 

b) Evaluate the proximal operator of a quadratic function [11]: 

𝐮𝑛+1 = arg min
𝐱

(
1

2
∑(𝑥𝑖,⋅ − 𝑦𝑖,⋅

𝑘 )𝐇𝑖(𝑥𝑖,⋅ − 𝑦𝑖,⋅
𝑘 )

⊤
𝐼−1

𝑖=0

+ ∑
1

2𝜏
(𝑥𝑖,⋅ − 𝑢𝑖,⋅

𝑛 + 𝜏(𝛾𝑗𝐀∗𝑣⋅,𝑗
𝑛+1)

𝑖,⋅
) (𝑥𝑖,⋅ − 𝑢𝑖,⋅

𝑛 + 𝜏(𝛾𝑗𝐀∗𝑣⋅,𝑗
𝑛+1)

𝑖,⋅
)

⊤
𝐼−1

𝑖=0

) , ∀𝑗 

The optimizer of this quadratic form was derived as: 

𝑢𝑖,⋅
𝑛+1 = (𝜏𝐇𝑖 + 𝐈)−1 (𝜏𝐇𝑖𝑦𝑖,⋅

𝑘 + 𝑢𝑖,⋅
𝑛 − 𝜏(𝛾𝑗𝐀∗𝑣⋅,𝑗

𝑛+1)
𝑖,⋅

) , ∀𝑗, 𝑖, 

where (⋅)𝑖,⋅ stands for the row 𝑖 of the result of the parenthesized operation and 𝐀∗
 is the 

adjoint operator [22]. 

[16] 

c) Update estimate [11]: 

𝐱𝑛+1 = 𝐮𝑛+1 + 𝜃(𝐮𝑛+1 − 𝐮𝑛) [17] 

d) Repeat steps a), b), c) until convergence and then set: 

𝐩𝑘+1 = 𝐱𝑛+1 [18] 

3) Repeat main steps 1), 2) until convergence. 
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3 METHODS 

3.1 EXPERIMENTAL DATA 
For the comparisons with the ground truth, we have designed a numerical DCE-MRI rat phantom. The 

phantom was based on a DCE-MRI examination of a real rat with implanted glioblastoma (47) (next 

paragraph). A high-resolution image (1024×1024 pixels) of an axial slice of head including the tumor was 

created based on manual segmentation of a real DCE-MRI image sequence into 41 homogeneous regions 

(Figure 1). Each region was described by a set of perfusion parameters based on literature and on perfusion 

analysis results from (47). For each set of parameters, a concentration-time curve was generated using the 

TH model and a pre-defined AIF (48) in high temporal resolution (sampling period equal to TR). The curves 

were converted to signal-intensity curves based on the acquisition model of the FLASH acquisition with no 

𝑇2
∗ effect and assuming a constant contrast-agent relaxivity 𝑟1 and spatially invariant native relaxation time 

𝑇10 and proton density. The signal intensity curves were used to construct a high-spatial-resolution image 

at each TR. These images, multiplied by coil sensitivities (estimated from real measurements), were then 

Fourier transformed to the k-space and echoes extracted as k-space lines corresponding to the acquisition 

scheme (next paragraph). Complex uncorrelated zero-mean Gaussian noise was added to obtain SNR 

according to real conditions (Figure 1). In addition to the dynamic DCE-MRI scans, multi-flip-angle pre-

contrast scans were simulated. The simulated dynamic sequence was converted to the contrast-agent 

concentration using the pre-contrast images according to (49). 

A real DCE-MRI recording of a glioblastoma-bearing rat was used as a testing preclinical dataset (detailed 

description in (47)), acquired on a 7 T horizontal PharmaScan (Bruker Biospin, Germany) with a four-

channel rat head surface coil using the FLASH acquisition: one 1mm slice, TR/TE 8/2.1 ms, FA 17°, 

acquisition matrix 128×128, temporal resolution 0.768 s, total scan time ~13 min. The contrast agent 

(Omniscan - GE Healthcare, Norway) of 0.1 mmol/kg was injected intravenously after 25 s of recording. 

The pre-contrast scans were acquired using the same parameters except for the FA (5°, 10°, 15°, 20°, 25°, 

30°). These scans were used to convert the dynamic sequence to the contrast-agent concentration images 

(49). The AIF was derived using multichannel blind deconvolution (50) as stated in the original paper (47). 

A testing clinical dataset of a renal-cell-carcinoma-metastasis patient (details in (51)) was acquired on a 

Magnetom Avanto 1.5 T MRI scanner (Siemens AG, Munich, Germany) using the T1-weighted 2D 

saturation-recovery prepared Turbo FLASH (nonselective SR pulse): TR/TE/TI 400/1.09/200 ms, FA 16°, 

acquisition matrix 128×128, temporal resolution 1.2 s, three coronal slices, total scan time 10 min. The 

contrast agent bolus of 7.5 ml (Gadovist – Bayer Schering Pharma, Berlin, Germany) was injected into 

antecubital vein. The pre-contrast scans acquisition preceded with the same parameters except TI (500, 



Submitted to MRM, 24th April 2019 

1000, 3000 ms, five frames per each) to perform conversion to contrast-agent concentration as in (52). The 

AIF was estimated using multi-channel blind deconvolution according to (51). 

3.2 INITIAL SETUP 
To keep the regularization weights unchanged across measurements and AIFs with different energies, the 

measured perfusion curves and the AIF were normalized by scalar constants 𝛼TRF, 𝛼AIF to always obtain 

similar ratio of the data and the regularization terms values. Additionally, we have separated relative weights 

𝛾𝑗
′ and the global weight 𝛤 such that 𝛾𝑗 = 𝛤𝛾𝑗

′. This extended the functional [12] to: 

𝐩′ = arg min
𝐩′∈𝑃𝐼

∑ 𝜎𝑖
−2 ∑ ( αTRF

−1  𝑆𝑖,𝑛
𝜙

− αAIF
−1 𝑐(𝑛Δ𝑡, 𝑝𝑖,⋅

′ ))
2

𝑁−1

𝑛=0

𝐼−1

𝑖=0

+ 𝛤𝑁 ∑ 𝛾𝑗
′‖|𝐀𝑝⋅,𝑗

′ |‖

𝐽−1

𝑗=0

 [19] 

where 𝛼TRF, 𝛼AIF are estimated from the measured data and AIF using: 

𝛼TRF = quantile0.75(median(𝑆𝑖,⋅
𝜙

), 𝑖 = 0, 1, … , 𝐼 − 1), 𝛼AIF = median(𝑐a(𝒏Δ𝑡)) [20] 

The estimates are finally computed as: 𝐩̂ = 𝐩̂′ except for 𝑝̂⋅,1 = 𝛼TRF𝛼AIF
−1  𝑝̂⋅,1

′ , since only the perfusion map 

𝐹p is influenced by the energy of the inputs. It is worth noting that the number of samples 𝑁 was included 

in [19] to eliminate possibly different number of time samples in the measured data 𝐒𝛷. 

The relative weights were estimated based on the numerical phantom using the maximum likelihood 

approach (53), i.e. 𝛾𝑗
′′ = 𝐼 ‖|𝐀𝑝⋅,𝑗

′ |‖⁄ , ∀𝑗, transformed to 𝛾𝑗
′ = 𝛾𝑗

′′ ∑𝜸′′⁄ , ∀𝑗. The minimization was run only 

from one starting point based on the authors’ experience and results in (16) using the TH model. The relative 

weights, the starting point as well as the constraints of the parameters are defined in Table 2. The estimates 

were projected onto the constraints 𝑃 before any evaluation of the pharmacokinetic model throughout the 

iterative procedure (45). This was done to ensure the respective physiological ranges and numerical stability. 

The stopping criterion in the main loop of the algorithm (proximal Levenberg-Marquardt) was set 

experimentally to 50 iterations and each sub-problem (primal-dual) was stopped after 200 iterations. The 

estimates of noise standard deviations (𝜎𝑖, ∀𝑖) were computed using the median of the absolute deviation 

estimator with Daubechies wavelet (54). The source code of the algorithm is available at: 

https://github.com/Bartolomejka/DCE-MRI_Regularization_MRM. 

4 RESULTS 

4.1 STRENGTH OF REGULARIZATION 
The goal of this numerical-phantom experiment was to analyze the influence of the global regularization 

weight 𝛤 on the perfusion parameter estimates. The proposed algorithm was run for 16 values of 𝛤 spread 
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logarithmically from 10−3 to 102. The results are shown in Figure 2 and Supporting Information Figures 

S1, S2 as perfusion-parameter maps and in Figure 3 as the mean absolute error (MAE) for each perfusion 

parameter and as the mean, 𝜇(⋅), of the reduced chi-squared statistic, 𝜒red
2 , computed per voxel, which is 

related to the data-term value in [12]. The metrics were defined as: 

𝑀𝐴𝐸𝑗 =
1

𝐼
∑|𝑝̂⋅,𝑗 − 𝑝⋅,𝑗

⋆ |

𝐼−1

𝑖=0

 

𝜒red
2 =

1

(𝑁 − 𝐽)
(𝜎𝑖

∗)−2 ∑ ( 𝑆𝑖,𝑛
𝜙

− 𝑐(𝑛Δ𝑡, 𝑝̂𝑖,⋅))
2

𝑁−1

𝑛=0

 

[21] 

where 𝑝⋅,𝑗
⋆ , ∀𝑗 is the ground truth. The noise standard deviation 𝜎𝑖

∗, ∀𝑖 was estimated using the ground truth. 

Additional metrics showing the bias and precision are plotted in Supporting Information Figure S3. The 

areas where the model is invalid or unstable, i.e. bones (no signal), arteries (no extravascular space), brain 

tissue (no contrast-agent extravasation), and areas where SNR<5 dB (areas far from surface coils), were 

excluded from the analysis. 

When 𝛤 increased, the MAE values (Figure 3) decreased until their minimum, after which they started 

increasing exhibiting an over-regularization effect. The minima are achieved for 𝛤 = 0.22, except for 𝐹p, 

𝑣p, where the optimum is 𝛤 = 4.64. The value 𝛤 = 0.22 also corresponded to the best perfusion-parameter 

maps visually (Figure 2). The optimal value 𝛤 = 0.22 was also consistent with the visual analysis of the 

bias and precision (Supporting Information Figure S3) for most perfusion parameters. Supporting 

Information Figure S3 shows that increasing 𝛤 could further improve precision but at the cost of increased 

bias. MAE shapes similar to ours were reported also in (22); however, in (22) the shape of the curve 

equivalent to our 𝜇(𝜒red
2 ) (Figure 3) was similar to the MAE curves. This was not observed here. A probable 

explanation is that our pharmacokinetic model and minimizer are more robust in terms of local optima. 

Interestingly, 𝜇(𝜒red
2 ) ≈ 1 for any 𝛤 meaning that the estimated concentration-time curves fitted the data 

well even for high regularization (cf. Supporting Information Figure S1 showing 𝜒red
2  per voxel). 

4.2 BIAS AND PRECISION OF THE ESTIMATOR 
The proposed method (with fixed 𝛤 = 0.22) was quantitatively compared to the standard non-regularized 

method (Table 3 – tumor tissues, Supporting Information Table S1 – all tissues). The metrics used were the 

mean and the standard deviation of perfusion-parameter estimates within each simulated tissue region, 

representing the bias and precision of the estimator, respectively. They were estimated from a single 

numerical rat phantom dataset (i.e. one realization of noise). The proposed method performed the best for 

large tissue areas with low SNR as expected. The non-regularized version led to slightly less biased or more 

precise estimates only in some small tissue areas or regions with high SNR. 
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We additionally tested the performance of the non-regularized and the proposed methods with the optimal 

setting (Section 4.1) on the numerical phantom for 50 noise realizations. To measure the bias and the 

precision of the estimators, the mean and the standard deviation of the perfusion-parameter estimates were 

computed for each voxel. Supporting Information Figure S4 (Mean) shows a distinct systematic difference 

between the methods in the low SNR areas, i.e. a clearly lower bias of the regularized estimation. In addition, 

the standard deviation of the proposed estimator is lower (i.e. higher precision), leading to an improved 

readability of perfusion maps (cf. Figure 2 with Supporting Information Figure S4 – standard deviation, 

parameter 𝐹p in tumor outer region). 

To compare the two estimators quantitatively, we have again estimated their bias and precision per tissue 

(Supporting Information Table S2) by averaging their mean and standard deviation in Supporting 

Information Figure S4 within each simulated tissue region. In agreement with the evaluation based on a 

single noise realization, the proposed method enjoyed consistently better precision and in majority of the 

cases also a lower bias (Supporting Information Table S2). 

4.3 COMPUTATIONAL DEMANDS 
To assess the time requirements of the proposed method, additional data from the experiment in Section 4.1 

were analyzed. It included the number of evaluations of the pharmacokinetic model 𝑐(𝑛𝑇s, 𝑝𝑖,⋅
′ ) for each 

voxel 𝑖 and the total duration of the minimization procedure measured on a 6-core Intel(R) Core(TM) i7-

8700K CPU @ 3.70GHz, implementation in Matlab without parallelization. The same was analyzed for the 

standard method without regularization, i.e. the denoising step [14] was excluded. Additionally, the standard 

non-regularized method was accelerated by including a stopping criterion of a minimal change in its data 

term. 

The proposed regularized perfusion analysis with 𝛤 = 0.22 needed 36 min to finish in comparison with 20 

min in the non-regularized case. The data consisted of 9916 curves, with 1000 time points each. The 

evaluation of the LM step [13] took 80 % and the denoising step [14] took 15 % of the total time in the 

proposed algorithm. 

As the calculation of the pharmacokinetic model [4] was the most time-demanding operation, the 

distribution of the number of model evaluations in each pixel and their total count were analyzed (Figure 

4). Theoretically, the number of model evaluations in the regularized method is at least twice the number of 

iterations times the number of the concentration-time curves, since recalculation of the gradients after each 

denoising step is needed. Contrarily, the non-regularized method can perform almost an arbitrary number 

of model evaluations, since the number of iterations is not fixed for particular curves. However, the 

regularized method does not need twice the non-regularized method model evaluations (black points in 
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Figure 4). This means that the recomputations of the model and its derivatives inside one iteration to estimate 

the LM step length are reduced in case of the regularized method. This stabilizing effect of the regularization 

is also visible in the distribution of the model evaluations in pixels (boxplots in Figure 4). As the 

regularization grows, the numbers of model evaluations in each pixel reduce, i.e. the pixels with problematic 

convergence are now converging better. 

4.4 REAL DATASETS 
The results of the experiments on real preclinical and clinical data are shown in Figure 5 and Figure 6, 

respectively; data were acquired under the approval of an Institutional Review and Ethics Boards. In both 

cases, the number of outlier perfusion-parameter estimates was clearly reduced and the spatial 

correspondence of the maps to the underlying anatomy was substantially improved. 

5 DISCUSSION 
The goal of this work was to improve the accuracy and precision of perfusion-parameter estimates in DCE-

MRI. In the standard voxel-by-voxel approach, errors in the estimates are mainly caused by the presence of 

local minima of the curve-fitting problem and appear mainly in low SNR conditions starting at 

approximately 13 dB (cf. Figure 1 – SNR, Figure 2 – Non-regularized). However, it can differ based on the 

tissue type. Erroneous estimates reduce the readability of the perfusion maps and their usability in practice. 

The estimation error in perfusion-parameter estimates is not only random but the estimates are also biased, 

as was demonstrated in Supporting Information Figure S4 (Mean, Non-regularized). 

Using spatial regularization, we were able to stabilize the estimates. The introduction of additional prior 

information led to a distinct improvement in the parameter estimates (Figure 2 or Supporting Information 

Figures S1, S2 for 𝛤 = 0.22). The improvements were of two types: our method has improved the precision 

(i.e. reduced the variance of the estimates in homogeneous regions) improving the readability of the 

parameter maps (e.g. Figure 2 – 𝑇c map of the tumor) and it has reduced the bias of the estimates in areas 

with low SNR  (see e.g. Figure 2 – bottom of the maps for 𝐹p, 𝐸, 𝑇c). These observations were supported by 

the quantitative evaluation of the bias and precision per tissue (Table 3 and Supporting Information Tables 

S1, S2). 

In comparison with previous publications (18–24); our work was based on the TH model as a natural 

successor of the previously used simpler models. Our study showed that the increased complexity of the TH 

model can still be handled using spatial prior. In addition, as opposed to the relaxed ℓ1 norm or ℓ2 norm 

used by other groups, our prior is the total variation using exact ℓ1-norm. This leads to a non-differentiable 
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criterion functional of the estimator. As was derived in the paper, application of the state-of-the art 

minimization techniques, i.e. proximal algorithms, solved this fundamental drawback efficiently.  

In contrast to the previous spatially regularized DCE-MRI approaches, our spatial-regularization model [12] 

adjusts the strength of regularization automatically to the spatially varying noise level. Hence, voxels with 

high noise level are regularized more than those with low noise level. To utilize this property, the standard 

deviations of noise in each voxel were estimated using an independent estimator (54) prior to the 

minimization. Alternatively, estimates from non-regularized curve fits similar to (22) can be used, which is 

more precise but time-consuming. A more challenging approach would be estimation of noise standard 

deviations for each time instant or to formulate the problem using an exact noise distribution model. We 

assume a zero-mean Gaussian noise with spatial-variant standard deviation, which is not valid for low-SNR 

areas. 

The presented method is an experimental method pushing the DCE-MRI limits utilizing the modern image 

processing techniques. The target application is pre-clinical DCE-MRI data processing, where strongly 

inhomogeneous coil sensitivities are causing dramatic reduction of SNR in areas distant from the coils. 

Similarly, the clinical datasets may suffer from insufficient SNR, e.g. in case of 3D imaging. The target 

application of our minimizer is defined by the model used in the core of the algorithm, i.e. the 

pharmacokinetic model. Its replacement by another pharmacokinetic model or a completely different model 

with a similar structure can solve non-linear minimization problems with regularization in other 

applications, e.g. arterial spin labeling (ASL) or diffusion tensor imaging (DTI). 

Another aspect that deserves discussion is the used regularization function and its relation to the properties 

of the numerical rat phantom. We have used the total variation, which is a simple regularization function 

that favors piecewise-constant functions. In this way, we incorporated the assumption that tissues contain a 

small number of homogeneous regions with constant perfusion properties. To model real semi-

homogeneous tissues better, we could choose one of more complex alternatives (by replacing the image 

gradients of the total variation (𝐀 in [6]). These are for example the wavelet transform as in (24) favoring 

piecewise-polynomial functions or the total generalized variation (55) favoring piecewise linear functions. 

However, in our experience, the real-life difference between them is not large. What is important, is to apply 

any regularization with a preference of piecewise-smooth functions, even a simple one. 

Our numerical rat phantom contains several dozens of regions, where all the voxels have the same perfusion 

parameters. We are aware of the fact that this simplistic choice favors in a sense the used regularization 

function. We cannot solve this problem by using another regularization function, because all common 

functions favor piecewise constant functions. On the other hand, we are not aware of any good model to 
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describe the change in perfusion parameters within the same tissue. Any ad-hoc noise introduced into the 

parameters could influence the results in an unpredictable way. These considerations lead us to the unideal 

but plausible choice of the total variation regularization and the simple numerical rat phantom with constant 

regions. 

In general, to set up the regularization strength is challenging even for the standard problem when 

regularizing a single image. In the DCE-MRI, there are five perfusion-parameter maps to regularize 

simultaneously, i.e. five regularization weights have to be set. The weights are not independent, since each 

of them affects the others via the pharmacokinetic model. If, for example, one perfusion-parameter map is 

forced to be too smooth (by setting its weight high), the estimates of the remaining perfusion parameters 

compensate for this effect to preserve a good fit in the data term. Thus their maps become uneven (data not 

shown but similar behavior is visible in Figure 2 or Supporting Information Figure S1, right column, 

parameters 𝐹p vs. 𝐸, 𝑇c). Therefore, the weights must not take only the values of the perfusion parameters 

into account but also their interconnection through the data-term fitting. 

We have approached the problem of setting the relative regularization weights by the maximum likelihood 

estimation on a realistic numerical phantom. The optimal global weight 𝛤 was chosen based on knowledge 

of the ground-truth and the estimated perfusion parameters. We have applied these weights to the real dataset 

and obtained a substantial improvement of the spatial consistency between the perfusion-parameter maps 

and the anatomical images when compared to the non-regularized version. However, the accuracy 

improvement gained from the proposed spatial regularization is difficult to quantify for the real data where 

no ground-truth is available. Since the proposed algorithm utilizes data normalization and an estimator of 

the noise variance based on the input data, it should not be necessary to change the global regularization 

weight 𝛤, nor the relative regularization weights 𝜸 for new datasets. However, this beneficial property is 

difficult to be thoroughly tested and thus a slight modification of 𝛤 can improve the estimates in new 

scenarios. 

A related question is, which perfusion parameters should be spatially regularized. In this paper, the same 

parameters as the parameters of the pharmacokinetic model are regularized: 𝑇c, 𝑇e, 𝛼, 𝜏 (parameters 

independent of AIF and concentration-time curves scaling) and 𝐹p (dependent on scaling of the curves). 

This choice of the regularized parameters was also motivated by the fact that 𝐹p, 𝑇c, 𝛼 are hard to estimate 

in comparison with the derived perfusion parameters as e.g. 𝑣p, 𝑣e, 𝐾trans. Despite the fact that the derived 

parameters were not regularized, their estimates were stable and robust to over-regularization contrary to 

the regularized parameters; see perfusion-parameter maps of 𝑣p = 𝐹p𝑇c and 𝐾trans = 𝐹p𝐸 in Supporting 

Information Figures S1, S2. 
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Although we have justified the set of parameters for regularization, it is not clear whether this set is equal 

to an optimal set of parameters to parametrize the model in the minimization, which influences convergence. 

In the non-regularized case, the optimal parametrization was studied in (56) for the extended Tofts model, 

but in our work, the parameterization was not studied and the selection of the parameters was driven by the 

regularization and practical reasons. 

6 CONCLUSION 
Incorporation of spatial prior information in terms of total variation helps to improve the estimates of 

perfusion parameters. This was clearly shown on realistically simulated data. Perfusion maps estimated from 

pre-clinical and clinical data showed a substantially better consistency with anatomical images than in case 

of the traditional estimation with no spatial prior. 

Our implementation of the spatial prior incorporates an additional image denoising step applied to the 

perfusion maps after each iteration of the voxel-wise Levenberg-Marquardt algorithm. The time demands 

of the denoising step are negligible in comparison with the evaluation of the pharmacokinetic model and its 

gradients keeping the presented algorithm tractable. However, the algorithm needs more model evaluations 

than the non-regularized algorithm, because of the additional model evaluations after each denoising step 

and a missing smart stopping-criterion. 
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A. APPENDIX 

A.1 ADJOINT OPERATOR OF THE IMAGE GRADIENT 
The adjoint operator 𝐀∗, required in the primal-dual algorithm, has for the image gradient the form of a 

negative discrete divergence (27): 

𝐀∗ (
𝑿1

𝑿2
) = 𝛁r

⊤𝑿1 + 𝛁c
⊤𝑿2 = −div (

𝑿1

𝑿2
), [22] 
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where 𝑿1, 𝑿2 are respective components of the vector field with size equivalent to the result of the gradient 

operator in [6]. The divergence takes the position of the voxels in the image into account (43). 
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Table 1: Mathematical notations 

Symbol Description 

𝐀, 𝐩 Matrices 

𝒙 Vector 

𝑥𝑗 The 𝑗𝑡ℎ element of 𝒙 

𝐴𝑖,𝑗 One element of 𝐀 in the 𝑖𝑡ℎ row and the 

𝑗𝑡ℎ column 

𝑝𝑖,⋅ The 𝑖𝑡ℎ row of 𝐩 

𝑝⋅,𝑗 The 𝑗𝑡ℎ column of 𝐩 

𝐇𝑖 The 𝑖𝑡ℎ matrix from the array of matrices 

𝒚𝑘 Vector 𝒚 in the 𝑘𝑡ℎ iteration 

𝜃 constant 

𝐩, 𝐩∗ Estimate, ground truth of 𝐩 

| ⋅ | Magnitude of a vector field or a number 

 

Table 2: Definitions of perfusion parameters and related quantities 

Perfusion 

parameter 

Description Units Starting 

point, 𝒑0 

Constraints, 

𝑃 

Relative 

weight, 𝜸′ 

𝐹p  Plasma flowa ml/min/ml 1 [10−3, 102]  0.025 

𝑇c  Mean capillary transit time min 0.1 [Δ𝑡, 3]  0.283 

𝑇e  Mean transit time of EESb min 2.5 [Δ𝑡, 102]  0.024 

𝛼  = 𝑃𝑆 𝐹p⁄ = − ln(1 − 𝐸)  – 0.4 [10−4, 3]  0.103 

𝜏  Bolus arrival time min 0 [−0.5,1]  0.565 

𝑃𝑆  Permeability-surface area product ml/min/ml    

𝐸  Extraction fraction –    

𝑣p  Plasma volume ml/ml    

𝑣e  EESb volume ml/ml    

𝑘ep  EESb-to-plasma rate constant 1/min    

𝐾𝑡𝑟𝑎𝑛𝑠  Volume transfer constant ml/min/ml    

a – values take the reweighting by 𝛼TRF, 𝛼AIF into account 

b – extravascular extracellular space 
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Table 3: Quantitative comparison of the proposed TV-regularized (TV) with 𝛤 = 0.22 and non-regularized voxel-wise 

(VW) estimations with the ground truth (GT) numerical rat phantom evaluated statistically per tissue in tumor.  stands 

for mean,  for standard deviation. Bold values indicate lower bias or higher precision. Complete table can be found 

in supporting information (Supporting Information Table S1). 

Tissuea Area SNRb Method 𝐹p 

[ml/ml/min] 

𝑇c 

[min] 

𝑇e 

[min] 

𝐸 

[–] 

𝑣p 

[ml/ml] 

𝐾trans 

[ml/ml/min] 

[label] [voxels] [dB] 
 

            

41 1 23.0 

GT 0.13  0.27  1.85  0.41  0.033  0.052  

VW 0.12  0.24  1.95  0.39  0.029  0.047  

TV 0.13  0.23  1.99  0.37  0.029  0.046  

39 5 22.1 

GT 0.12  0.23  1.98  0.39  0.028  0.047  

VW 0.12 0.01 0.27 0.03 2.09 0.09 0.38 0.02 0.032 0.001 0.046 0.002 

TV 0.13 0.00 0.25 0.01 2.12 0.09 0.36 0.02 0.031 0.001 0.046 0.002 

37 7 20.9 

GT 0.12  0.27  2.39  0.35  0.032  0.041  

VW 0.11 0.02 0.27 0.04 2.49 0.26 0.34 0.04 0.028 0.004 0.037 0.007 

TV 0.11 0.01 0.24 0.01 2.52 0.27 0.32 0.03 0.028 0.004 0.037 0.007 

40 4 18.4 

GT 0.12  0.29  2.23  0.30  0.035  0.036  

VW 0.12 0.01 0.26 0.04 2.41 0.20 0.28 0.03 0.030 0.002 0.033 0.003 

TV 0.12 0.01 0.24 0.01 2.45 0.17 0.26 0.01 0.030 0.001 0.033 0.003 

38 8 17.2 

GT 0.11  0.25  2.77  0.27  0.027  0.029  

VW 0.11 0.02 0.25 0.04 2.92 0.30 0.26 0.02 0.026 0.002 0.028 0.003 

TV 0.11 0.01 0.23 0.01 2.95 0.31 0.25 0.01 0.026 0.002 0.028 0.003 

36 57 15.4 

GT 0.07  0.22  3.97  0.25  0.016  0.018  

VW 0.08 0.02 0.22 0.05 3.95 0.54 0.25 0.04 0.017 0.004 0.019 0.004 

TV 0.08 0.01 0.20 0.03 3.96 0.50 0.24 0.03 0.016 0.004 0.019 0.004 

35 116 8.7 

GT 0.09  0.08  6.11  0.10  0.007  0.009  

VW 0.07 0.06 0.16 0.09 6.11 1.52 0.18 0.09 0.008 0.003 0.009 0.002 

TV 0.07 0.03 0.12 0.02 5.88 0.53 0.15 0.03 0.008 0.003 0.009 0.002 

34 97 7.2 

GT 0.07  0.09  6.93  0.10  0.006  0.007  

VW 0.07 0.07 0.16 0.08 7.13 1.91 0.16 0.09 0.007 0.003 0.007 0.002 

TV 0.06 0.02 0.11 0.02 6.37 0.40 0.12 0.05 0.007 0.002 0.007 0.002 

a – position of the labels can be found in Figure 1 

b – mean SNR in the tissue 
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Figure 1 Numerical rat phantom – 41 different color-coded tissues (left) and the SNR induced to the phantom data by 

adding noise (right). The magenta rectangle shows the close-up used in Figure 2 
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Figure 2 Effect of the regularization on perfusion parameters estimated from synthetic data in comparison with the 

ground truth. Only results for selected perfusion parameters and regularization weights are shown in a close-up defined 

in Figure 1. The black areas (e.g. brain tissue surrounding the tumor and areas far from the used surface coils) had 

SNR<0 dB (cf. Figure 1) and were excluded from the computation. The closest MAE distance to GT for most of the 

parameters is obtained for 𝛤 = 0.22 – column “Optimal” (cf. Figure 3). For 𝛤 = 2.2 – column “Over-regularized”, the 

maps are too smooth causing loss of details. 
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Figure 3 Effect of the regularization weight 𝛤 on the distance of the parameter estimates from the ground truth (MAE) 

for the regularized parameters (top) and for the derived parameters (bottom – color curves). The effect of the 

regularization on the quality of fit represented by the mean of the reduced chi-squared statistic 𝜇(𝜒red
2 ) is also shown 

(bottom – black line). 
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Figure 4 Distribution of the number of pharmacokinetic model evaluations in voxels shown in boxplots together with 

the total number of function evaluations (black points) as a function of the regularization strength. 𝛤 = 0 stands for 

the standard non-regularized algorithm. The number of voxels is 𝐼 = 9916, the maximum number of iterations was 

50. 
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Figure 5 Preclinical data (rat brain with glioblastoma). Comparison of the perfusion parameter maps estimated without 

and with spatial regularization (top, bottom row in a group, respectively). The dotted circle in the anatomical image 

(top right) indicates the tumor. The final SNR map is shown only once since it was similar for both methods. The 

perfusion parameters were calculated only for curves satisfying SNR>0 dB. 
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Figure 6 Clinical data (abdomen area with renal cell carcinoma metastasis). Comparison of the perfusion parameter 

maps estimated without and with spatial regularization (top, bottom row in a group, respectively). The dotted circle in 

the anatomical image (top right) indicates the tumor, the magenta rectangle indicates the closeup. The final SNR map 

is shown only once since it is similar for both methods. The perfusion parameters were calculated only for curves in a 

rectangular ROI satisfying SNR>0 dB. 
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Supporting Information Figure S1 Effect of the global regularization weight 𝛤 on perfusion parameters estimated from 

the numerical rat phantom in comparison with the ground truth (GT). Estimates of the regularized perfusion parameters 

and the reduced 𝜒2 metric are shown for selected regularization weights. The location of the used close-up is defined 

in Figure 1. 

Supporting Information Figure S2 Effect of the global regularization weight 𝛤 on perfusion parameters estimated from 

the numerical rat phantom in comparison with the ground truth (GT). Estimates of the derived perfusion parameters 

and for selected regularization weights are shown in a close-up defined in Figure 1. 

Supporting Information Figure S3 Simulated data, effect of the regularization weight 𝛤 on the bias (estimated within 

a tissue) averaged using its absolute value over all tissues (left column) for the regularized parameters (top) and for the 

derived parameters (bottom). Similarly, the mean of tissue standard deviations is shown (measure of precision - right 

column). In the formulas, 𝐾, 𝑘 relate to tissue indices and 𝑁, 𝑛 relate to indices of voxels inside the tissues. 

Supporting Information Figure S4 Effect of the regularization (Proposed, 𝛤 = 0.22) on the mean and standard 

deviation of the perfusion-parameter estimates from 50 noise realizations of the numerical rat phantom in comparison 

with the ground truth (GT). 

Supporting Information Table S1: Quantitative comparison of the proposed TV-regularized (TV) and non-regularized 

voxel-wise (VW) estimations from a single noise realization with the ground truth of the numerical rat phantom. The 

mean, , and standard deviation, , of the estimates are evaluated within a tissue region. Bold values indicate the 

lowest bias and the highest precision. 

Supporting Information Table S2: Statistical quantitative comparison of the proposed TV-regularized (TV) and non-

regularized voxel-wise (VW) estimations from 50 noise realizations with the ground truth of the numerical rat phantom. 

The estimation statistic is expressed as the mean and standard deviation shown in Figure S4 averaged within each 

tissue region, denoted as  and respectively. Bold values indicate the lowest bias and the highest precision. #### 

represents values out of range caused by an outlier. 


