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Abstract. The current state of the art in audio declipping is achieved
by SPADE (SParse Audio DEclipper) algorithm by Kitić et al. Until
now, the synthesis/sparse variant, S-SPADE, has been considered signif-
icantly slower than its analysis/cosparse counterpart, A-SPADE. It turns
out that the opposite is true: by exploiting a recent projection lemma, in-
dividual iterations of both algorithms can be made equally computation-
ally expensive, while S-SPADE tends to require considerably fewer itera-
tions to converge. In this paper, the two algorithms are compared across
a range of parameters as the window length, window overlap and redun-
dancy of the transform. The experiments show that although S-SPADE
typically converges faster, the average performance in terms of restora-
tion quality is not superior over A-SPADE.

Keywords: Clipping, Declipping, Audio, Sparse, Cosparse, SPADE, Pro-
jection, Restoration

1 Introduction

Clipping is a non-linear form of signal distortion which appears in the context of
signal acquisition, processing or transmission. In general, clipping occurs when
the signal amplitude gets outside of the allowed dynamic range. Along with the
missing samples and additive noise, clipping is one of the most common types of
audio signal degradation. Not only does clipping have negative effect on perceived
audio quality [35], it also degrades the accuracy of automatic speech recognition
[25,19,34]. This motivates a restoration task usually termed declipping, i.e. the
recovery of signal samples that originally laid outside the recognized range.

In this work, we concentrate on the case of the so-called hard clip degradation,
where the waveform of the signal is simply truncated such that the signal value
cannot leave the interval [−θc, θc]. If vector x ∈ RN denotes the original discrete-
time signal, then the respective hard-clipped signal is

y[n] =

{
x[n] for |x[n]| < θc,
θc · sgn(x[n]) for |x[n]| ≥ θc,

(1)
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i.e. hard clipping acts elementwise, wasting information in the peaks of x that
exceed the clipping threshold θc.

In the past, several attempts were made to perform declipping. Since declip-
ping is inherently ill-posed, any method attacking the problem must introduce
an assumption about the signal. As a short review of the field, we mention
a method based on autoregressive signal modelling [21], a method based on the
knowledge of the original signal bandwidth [1], statistical approaches [17,15],
and simple, however not quite effective algorithms in [11], [32] and [26]. The
quality of restoration was significantly elevated when models involving sparsity
of the audio signal were introduced. In such models, it is assumed that there
is a transform which either approximates the signal well using a low number of
nonzero coefficients (the synthesis/sparse model), or the transform applied to
the signal produces a low number of nonzero coefficients (the analysis/cosparse
model) [8,13,27]. As the suitable transform, time-frequency operators are usually
considered such as the Discrete Fourier Transform (DFT), the Discrete Cosine
Transform (DCT), or the Discrete Gabor Transform (DGT), also known as the
Short-time Fourier Transform (STFT) [18,9,14].

The very first method for sparse declipping was published in [2]; it was based
on a greedy approximation of a signal within the reliable (i.e. not clipped) parts.
Many alternative approaches appeared after this successful paper, such as [36]
that introduced convex optimization into the play, or [33] where the authors
forced a structure into the sparse coefficients (known as “structured” or “social”
sparsity). Article [12] shows that the introduction of a psychoacoustic masking
model (although very simple) improves the perceived quality of the restored
signal. Besides [6] that relies on non-negative matrix factorization, all the men-
tioned papers process the signal from the synthesis viewpoint. More recently,
a series of papers considered the declipping problem from the analysis side as
well [22,23,24], while [24] is considered the state-of-the-art declipper.

In this paper, we show that using a novel projection lemma, we were able to
derive a synthesis-based algorithm which is even faster than the analysis-based
one in [24]. Our experiments show that our algorithm, nevertheless, does not
outperform the analysis version in terms of the quality of restoration.

In Sec. 2, the declipping problem is formalized. Then in Sec. 3, the two ver-
sions of SPADE algorithm [24] are reviewed, and the new projection lemma is
exploited to develop a fast synthesis-based algorithm. Sec. 4 reports on experi-
ments that have been run.

2 Problem Formulation

Assume that a signal x ∈ RN has been clipped according to (1). We observe
the clipped signal y ∈ RN . We suppose that it is possible to divide the signal
samples into three sets R, H and L, that correspond to “reliable” samples and
samples that have been clipped to the “high” and “low” clipping thresholds,
respectively. To select only samples of a specific set, linear restriction operators
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MR, MH and ML will be used. Note that if these sets are not known in advance,
they can be trivially induced from the particular values of y.

Denote the declipped signal x̂. While performing any declipping algorithm,
it sounds natural to enforce that the samples MRx̂ match the reliable samples
MRy. The authors of the C-IHT algorithm [22] call this approach consistent.
Our approach obeys full consistency, meaning that in addition, samples MHx̂
should lie at or above θc and samples from MLx̂ should not lie above −θc. These
requirements are formalized by defining a set of signals Γ , consistent with the
three conditions:

Γ = Γ (y) = {x̂ |MRx̂ = MRy,MHx̂ ≥ θc,MLx̂ ≤ −θc}. (2)

In line with the recent literature, the fact that many musical signals are
sparse with respect to a (time-)frequency transform will be exploited. In words,
one would like to find signal x̂, which is the most sparse among all signals
belonging to the consistency set Γ . The state of the art declipping results are
achieved by the SPADE algorithm, which will be subject to description in the
next section. It comes in two variants, based on the synthesis (sparse) or analysis
(cosparse) understanding of “sparsity” [27].

3 The SPADE algorithm

SPADE (SParse Audio DEclipper) [24] is a heuristic declipping algorithm, ap-
proximating the solution of the following non-convex, NP-hard synthesis- or
analysis-regularized inverse problems:

min
x,z
‖z‖0 s. t. x ∈ Γ (y) and ‖x−Dz‖2 ≤ ε, (3)

min
x,z
‖z‖0 s. t. x ∈ Γ (y) and ‖Ax− z‖2 ≤ ε. (4)

Here ‖z‖0 is the `0 pseudonorm measuring the sparsity, i.e. counting the nonzero
elements of z. The `2 constraint bounds the distance between the estimate and
its sparse approximation. The linear operator D : CP 7→ RN is the synthesis
operator, and N ≤ P ; if regarded as a matrix in (3), it takes coefficients z and
forms the signal as the linear combination of its columns. Matrix D is often called
the dictionary [8]. In (4), the analysis operator A : RN 7→ CP is considered that
analyses the signal and produces its transform coefficients. In order to be able to
compare the two approaches, we naturally restrict to the case when the operators
are mutually adjoint, A = D∗.

Note that problems (3) and (4) both seek for the signal and its coefficients
simultaneously and that they both fall into a common, recently introduced gen-
eral signal restoration framework, see [16]. Both A and D are assumed full rank,
N , and both formulations produce equal results when D is a unitary operator
A = D−1 (the same will hold for the approximate solutions by SPADE).

It should be noted that in SPADE, the above optimization problems are
solved frame-by-frame, i.e. the signal is segmented into possibly overlapping
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time chunks and windowed. Problems (3) and (4) are then solved individually
on each such segment, and the output is formed using a common overlap-add
procedure. This allows real-time processing, and at the same time the time-
frequency structure of the processing is preserved. Specifically, as operators A
and D, the windowed (I)DFT is used, possibly with frequency oversampling [9].

SPADE attacks the two above problems by a modified ADMM algorithm
[5,7] resulting in the synthesis SPADE (S-SPADE) as shown in Alg. 1, and the
analysis SPADE (A-SPADE) given in Alg. 2.

Algorithm 1: S-SPADE

Require: D,y,MR,MH,ML, s, r, ε

1 ẑ(0) = D∗y,u(0) = 0, i = 1, k = s

2 z̄(i) = Hk

(
ẑ(i−1) + u(i−1)

)
3 ẑ(i) = arg minz ‖z− z̄(i) + u(i−1)‖22

s.t. Dz ∈ Γ
4 if ‖ẑ(i) − z̄(i)‖2 ≤ ε then
5 terminate
6 else

7 u(i) = u(i−1) + ẑ(i) − z̄(i)

8 i← i+ 1
9 if imod r = 0 then

10 k ← k + s
11 end
12 go to 2

13 end

14 return x̂ = Dẑ(i)

Algorithm 2: A-SPADE

Require: A,y,MR,MH,ML, s, r, ε

1 x̂(0) = y,u(0) = 0, i = 1, k = s

2 z̄(i) = Hk

(
Ax̂(i−1) + u(i−1)

)
3 x̂(i) = arg minx ‖Ax− z̄(i) + u(i−1)‖22

s.t. x ∈ Γ
4 if ‖Ax̂(i) − z̄(i)‖2 ≤ ε then
5 terminate
6 else

7 u(i) = u(i−1) + Ax̂(i) − z̄(i)

8 i← i+ 1
9 if imod r = 0 then

10 k ← k + s
11 end
12 go to 2

13 end

14 return x̂ = x̂(i)

Both SPADE algorithms rely on two principal steps. The first of them is
the hard thresholding Hk. This operator enforces sparsity by setting all but k
largest components of the input vector to zero. In practice, sparsity k of signals is
unknown, therefore SPADE performs sparsity relaxation: in every r-th iteration
variable k is incremented by s until the constraint embodied by the `2 norm
is smaller than ε. The second main step is the projection onto Γ that keeps
consistency given by (2) and will be discussed in the following.

3.1 Projection in A-SPADE

The projection in SPADE (row 3 in both Algorithms 2 and 1) constitutes the
most computationally demanding step. For general A and D, such projections
are achievable only by iterative algorithms.

The projection in A-SPADE is written as the optimization problem, where
one has to find a consistent signal x such that its analysis coefficients Ax are the
nearest possible with respect to given z̄(i) and u(i−1). The authors of [24] exploit
the benefit that when A∗ is a tight Parseval frame, i.e. A∗A = DD∗ = DA are
all identity operators [9], then the projection can be done elementwise in the
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time domain, such that

x̂(i) = projΓ

(
A∗(z̄(i) − u(i−1))

)
(5)

where projΓ is the orthogonal projection operator onto a convex set Γ , in our
case defined as

[projΓ (w)]n =


[y]n for n ∈ R,
max{[w]n, θc} for n ∈ H,
min{[w]n,−θc} for n ∈ L,

(6)

where [·]n denotes the n-th element of a vector.
We now rewrite the projection into a more convenient form. Let R̃ denote the

extended real line, i.e. R̃ = R∪ {−∞,∞}. Define the lower and upper bounding
vectors bL,bH ∈ R̃ such that

[bL]n =


[y]n for n ∈ R,
θc for n ∈ H,
−∞ for n ∈ L,

[bH]n =


[y]n for n ∈ R,
∞ for n ∈ H,
−θc for n ∈ L.

(7)

Recognizing that the multidimensional interval [bL,bH] matches the set of fea-
sible solutions (2), specifically Γ = {x |bL ≤ x ≤ bH}, the final A-SPADE
projection formula (5) can be written as

x̂(i) = proj[bL,bH] (A∗v) with v = z̄(i) − u(i−1). (8)

The projection onto the interval can be implemented as

proj[bL,bH](w) = min{max{bL,w},bH}, (9)

with min and max functions returning pairwise extremes element by element.
Note that restricting to Parseval tight frames in applications is not an issue

[24,3,4,31,30,28,20].

3.2 Projection in S-SPADE

For S-SPADE the situation is different. The projection has to be done in the
domain of coefficients. Authors of [24] claim that the projection needs to be com-
puted iteratively and that somewhat efficient implementation can be achieved
with D forming a tight Parseval frame. Yet, [24] reports many times higher
computational time for S-SPADE compared to A-SPADE.

We will show that it is possible to use an explicit formula to compute the
projection in S-SPADE, making both algorithms identical from the point of view
of complexity per iteration. Our goal is to find the optimizer

ẑ(i) = arg min
z

‖(z̄(i) − u(i−1))− z‖22 s.t. Dz ∈ Γ. (10)
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The following lemma can be found in several variations, see for example [29] or
[10]. We introduce a real-setting version for simplicity.
Lemma: Let the operator D : RP 7→ RN , N ≤ P , full-rank, DD> identity.
Let the multidimensional interval bounds bL,bH ∈ R̃N , bL ≤ bH. Then the
projection of a vector v ∈ RN , denoted and defined by

proj{x |Dx∈[bL,bH]}(v) := arg min
u

‖v − u‖2 s.t. Du ∈ [bL,bH],

respectively, can be evaluated as

proj{x |Dx∈[bL,bH]}(v) = v −D>
(
Dv − proj[bL,bH](Dv)

)
. (11)

In our application, we will need complex D with a special (time-)frequency
structure. Indeed, our D will be the synthesis operator of (possibly redundant)
discrete Fourier and Gabor tight frames [9]. In such cases, it is only necessary to
substitute D> by D∗ in (11). The proof of such an extended lemma, however,
gets much more involved by switching to the complex case, and therefore we
omit it for simplicity of presentation, as we plan to publish it in a separate
paper (currently in preparation).

Using bL and bH as defined above, the projection (10) can be written as

ẑ(i) = v −D∗
(
Dv − proj[bL,bH](Dv)

)
with v = z̄(i) − u(i−1). (12)

3.3 Comparing computational complexity

In both SPADE algorithms, the computational cost is dominated by the analysis
and synthesis operators. Returning to Algorithms 1 and 2, we see that A-SPADE
requires one analysis in step 2 and one synthesis in the projection (5). In case
of S-SPADE, the projection is the only demanding calculation, and according
to the new formula (12), it requires one synthesis and one analysis. This shows
that per iteration, both algorithms are equally demanding. This breaks down
the disadvantage of S-SPADE as presented in [24].

4 Experiments and results

Experiments are designed to compare A-SPADE and S-SPADE algorithms in
terms of quality of restoration and computational time, respectively. The quality
of restoration is evaluated using ∆SDR which expresses the signal-to-distortion
ratio improvement, according to the following formula:

∆SDR = SDR(x, x̂)− SDR(x,y) (13)

where x represents the original signal (known in our study), y is the clipped
signal and x̂ is the reconstructed signal, and the SDR itself is defined as

SDR(u,v) = 10 log10

‖u‖22
‖u− v‖22

[dB]. (14)
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Results below are usually presented in average ∆SDR values, taking the arith-
metic mean of the particular values from all tested audio signals in dB.

The advantage of using ∆SDR over plain SDR is that the ∆SDR value re-
mains the same whether the SDR is computed on the whole signal or on the
clipped samples only. (This can be easily shown directly from (13), using the
fact that our algorithms are consistent, i.e. the reliable samples of the recovered
signal and of the clipped signal match.)

Experiments were performed on five audio samples with approximate dura-
tion 5 seconds at sampling frequency 16 kHz. These excerpts were thoroughly
selected to be diverse enough in tonal content and in sparsity with respect to
the time-frequency transform. As a preprocessing step, the signals in consider-
ation were peak-normalized and then artificially clipped using multiple clipping
thresholds, θc ∈ {0.1, 0.2, . . . , 0.9}. Algorithms were implemented in MATLAB
R2017a and ran on a PC with Intel i7-3770, 16 GB RAM in single thread mode.

Note that some authors ([22,23,24,16]) evaluate the quality of restoration
depending on the input SDR, while in this paper we plot the results against
the clipping threshold θc. To get a notion of their relationship, we attach Tab. 1
which shows both θc and the average input SDR values.

Table 1. Average SDR values for particular clipping threshold θc computed on the
test signals as the whole and on the clipped samples only.

θc [–] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SDR [dB]
whole signal

3.71 7.49 11.40 15.54 20.15 25.32 31.44 38.74 48.11

SDR [dB]
clipped samples

3.46 6.30 8.68 10.78 13.16 15.22 18.04 20.37 23.63

Although the original SPADE algorithms [24] were purely designed to process
individual windowed time-frames, one after another, we also include an experi-
ment using SPADE on the whole signal, considering the DGT coefficients all at
once (Sec. 4.1). Then in Sec. 4.2, the classical SPADE setup is investigated, and
in later sections the influence of the window length, transform redundancy and
window overlap are considered. Note that is this paper, the term redundancy
specifies the rate of oversampling in frequency domain—for example, using an
oversampled Fourier analysis with 2048 frequency channels applied to a signal
of length 1024 means redundancy 2.

4.1 SPADE applied to whole signal

Fig. 1 presents the SDR improvement (∆SDR) for signals processed with SPADE
as a whole. The relaxation parameters of both algorithms are set to r = 1, s =
100 and ε = 0.1. In this experiment, the most common DGT declipping settings
such as 1024 samples long Hann window and 75% overlap is used, although
according to Sec. 4.3 such setting favors the analysis approach that performs
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better with shorter windows. Redundancy levels 1, 2 and 4 are achieved by
setting number of frequency channels M to values 1024, 2048 and 4096. The
black line in Fig. 1 denotes the result of S-SPADE with redundancy 1, however
this is identical to A-SPADE results with the same redundancy—in such a case,
D−1 = A and both algorithms perform equally (see Sec. 3).

An iteration of S-SPADE is typically slightly slower (approximately by 2 %)
than an iteration of A-SPADE. However, in general, S-SPADE needs fewer it-
erations to converge. The algorithm is considered as converged if the condition
on row 4 in both Algorithms 1 and 2 gets fulfilled, i.e. the termination function
falls under a prescribed ε. Fig. 2 presents the computation times; it is clear that
S-SPADE converges significantly faster than A-SPADE, especially at higher re-
dundancies. The average course of the termination function is presented in Fig. 7.
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Fig. 1. Declipping performance in terms of ∆SDR performed on the whole signal.

4.2 SPADE with signal segmentation

The disadvantage of the approach in Sec. 4.1 is that the largest time-frequency
coefficients are selected from the whole signal, and it does not take into account
the placement of the coefficients over time. This can easily result in selecting
a group of significant coefficients from a short time period and ignoring coef-
ficients that are significant rather locally. Thus, (as will be confirmed by the
experiments) it is more beneficial to process the signal with SPADE block by
block.

For this experiment, the relaxation parameters are set according to the orig-
inal paper [24], i.e. r = 1, s = 1 and ε = 0.1. Transform parameters are set as in
the previous experiment, i.e. sliding Hann window 1024 samples long with 75%
overlap and DFT with redundancy 1, 2 and 4 are used in each time-block.
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Fig. 2. Average computational times for declipping performed on the whole signal.
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Fig. 3. Declipping performance in terms of ∆SDR performed with signal segmentation.
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Fig. 3 presents ∆SDR results of both A-SPADE and S-SPADE algorithms
with processing by blocks. Even in this experiment, A-SPADE performs slightly
better but it is worth repeating that the choice of the window length suits bet-
ter the A-SPADE. Interestingly, A-SPADE performs somewhat better with more
redundant DFT, while S-SPADE, on the contrary, performs best with no redun-
dancy at all.
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Fig. 4. Scatter plot of SDR values for both S-SPADE and A-SPADE computed locally
on sliding blocks 2048 samples long. It is clear that in most time chunks, A-SPADE
results are better than those of S-SPADE. Results shown here are for the acoustic
guitar signal, nevertheless such a scatter plot is obtained for most of our test signals.

Apart from the overall performance, we also evaluated the two algorithms
locally—we wanted to know whether A-SPADE or S-SPADE better recovers the
signal within a short time range. Figures 4 and 5 demonstrate SDR results on
two audio signals using 1024 samples long Hann window with 75 % overlap and
DFT with redundancy 2. For each 2048 samples long block we computed two
corresponding SDR values, which are represented by a marker in the scatter plot.
For clarity, we only used clipping thresholds from 0.1 to 0.5. The SDR values
were computed using formula (14) on the whole signals; computing SDRs on
clipped samples only would reflect in a pure shift of axes in the scatter plot.

When redundancy 1 is used, the two algorithms perform identically, and they
also terminate after the same number of iterations. In light of this, computation
times presented in Fig. 6 show that in such a case, A-SPADE is marginally faster.
For more redundant transforms, S-SPADE needs fewer iterations to fulfill the
termination criterion and obtains its solution quicker.

Fig. 7 presents the average course of the termination function (row 4 in both
Algorithm 1 and 2). For S-SPADE, this function decreases faster causing the
whole algorithm to converge in fewer iterations.
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Fig. 5. Scatter plot of SDR values for both S-SPADE and A-SPADE computed locally
on sliding blocks 2048 samples long. More than half of the time chunks resulted in
markers below the identity line, indicating that S-SPADE returned better results. The
audiosignal used here is a heavy metal song; note that it was hard to find signal with
such a scatter plot. Note also that metal songs are typically far from being sparse in
a time-frequency transform.
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Fig. 6. Declipping performance in terms of average computational time performed
block-by-block.
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Fig. 7. Average course of the termination function during iterations for redundancy 2.

4.3 Window length

In many declipping algorithms where processing by blocks or via STFT is done,
such as [2,22,33,23], usual block (or window) length is set to 1024 samples.
This experiment is designed to compare both SPADE algorithms depending
on selected window length. Signals are processed by blocks similarly as in the
previous experiment, except that the redundancy of the DFT is 2 and the length
of the sliding window is set to 512, 1024, 2048 and 4096 samples, respectively.
In all four cases, the window overlap is fixed to 75 %.

Figues 8 and 9 present ∆SDR results depending on the window length for
A-SPADE and S-SPADE respectively. For the analysis approach, the length of
2048 samples seems to give best results for most clipping thresholds. When using
shorter (512 samples) or longer (4096 samples) windows, the SDR performance
drops down approximately by 2 dB. On the other hand, according to Fig. 9 the
synthesis approach performs better with longer windows. The length of 2048
samples seems to be optimal for S-SPADE as well, but the 4096 samples long
window performs by 2 dB better than the 1024 long one.

As far as the computation time is concerned, a longer window means longer
computation time. Average computational times for the window lengths 512,
1024, 2048 and 4096 are listed in Tab. 2.

Table 2. Average computation times in seconds depending on window length using
overcomplete DFT with redundancy 2.

window length 512 1024 2048 4096

A-SPADE 53 68 104 207

S-SPADE 34 41 60 115
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Fig. 8. Declipping performance of A-SPADE in terms of ∆SDR for different window
lengths.
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Fig. 9. Declipping performance of S-SPADE in terms of ∆SDR for different window
lengths.
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4.4 Window overlap

Window overlap is also an important parameter of the transform; it affects not
only the quality of restoration but the computational time as well. Therefore,
in this experiment, the restoration quality depending on window overlap is ex-
plored. As in the previous experiment, DFT with redundancy 2 and 1024 samples
long Hann window is used.

Fig. 10 shows an expectable fact that the bigger overlap is set, the better
results in terms of SDR are produced. In line with the results above, A-SPADE
performs slightly better than S-SPADE due to the chosen window length. More
interestingly, the performance of the synthesis version drops down significantly
when the overlap is set to 25 %. Thus, for a good reconstruction, it is necessary
to set the window overlap at least to 50 % of window length.
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Fig. 10. Declipping performance in terms of ∆SDR with different window overlap.

Table 3 shows the average computation times for overlaps 25, 50 and 75 % of
the window length. We note that an overlap larger than 75 % further increases
the computation time but does not bring much improvement in terms of SDR
(these facts are not shown).

Table 3. Average computation times in seconds depending on window overlap.

overlap 25% 50% 75%

A-SPADE 22 34 68

S-SPADE 14 21 41



Revisiting synthesis model in Sparse Audio Declipper 15

5 Implementation

Following the idea of reproducible research, we make our Matlab codes available.
The bundle is downloadable from URL
http://www.utko.feec.vutbr.cz/~rajmic/software/aspade_vs_sspade.zip

The main file of the SPADE package is a batch file declipping main.m, reading
the audio, normalizing and clipping the signal by calling hard clip.m. It is
possible to set transform parameters, such as the window length, overlap, window
type, redundancy of the transform.

For processing signals block-by-block, spade segmentation.m is used. This
function performs signal padding, dividing into blocks, multiplying by the anal-
ysis window and, after processing, multiplication by the synthesis window and
folding blocks back together (in the common “overlap-add” manner). SPADE
algorithm itself is implemented in two m-files: aspade.m for analysis version and
sspade.m for the synthesis one.

Recall that the spectrum of a real signal is equipped with the complex-
conjugated structure. Hard thresholding, performed by hard thresholding.m,
therefore takes the oversampled spectrum and thresholds the respective pairs
of complex entries, in order to keep the signal real. Projections onto the set of
feasible solutions are implemented in two m-files. Projection in the time domain
for A-SPADE according to (6) is implemented in proj time.m. S-SPADE is using
proj parse frame.m according to (11).

6 Conclusion

We exploited a novel projection lemma to speed up the synthesis version of de-
clipping algorithm SPADE. With the use of the explicit projection formula, the
computational cost, dominated by synthesis and analysis operators, is identi-
cal for both versions (per iteration). However, S-SPADE needs fewer iterations
to converge turning it to be significantly faster than A-SPADE. As a result,
S-SPADE is preferable in real-time processing. In average, A-SPADE performs
better in terms of ∆SDR than S-SPADE, although it is possible to find situations
where S-SPADE performs equally or even slightly better.

Experiments involving parameters of the DGT/DFT show that the optimal
window size differs for the algorithms. Whereas A-SPADE performs best with
shorter windows, S-SPADE, on the contrary, prefers slightly longer windows.
The influence of the window overlap is not negligible as well—we have shown
that the bigger overlap is, the better restoration results are obtained, in both
algorithms.

Unfortunately, our average results of S-SPADE differ from what the original
paper [24] reports. The authors of [24] claim that S-SPADE performs slightly
better than A-SPADE in terms of ∆SDR, and also that S-SPADE performs best
with redundancy 4. Our results indicate quite the opposite; in particular, our
S-SPADE performs worse in terms of ∆SDR and performs best when redundancy
is set to 1.

http://www.utko.feec.vutbr.cz/~rajmic/software/aspade_vs_sspade.zip
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Our future work will be to investigate differences between synthesis and anal-
ysis model (and their influence on audio restoration methods) in greater depth.
We also believe that introducing psychoacoustic model could lead to declipping
quality improvement.
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22. Kitić, S., Jacques, L., Madhu, N., Hopwood, M., Spriet, A., De Vleeschouwer, C.:
Consistent iterative hard thresholding for signal declipping. In: Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Conference on. (May
2013) 5939–5943
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