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ABSTRACT

The paper addresses the estimation of the relative transfer function
(RTF) using incomplete information. For example, an RTF esti-
mate might be recognized as too inaccurate in a number of fre-
quency bins. When these values are dropped, an incomplete RTF
is obtained. The goal is then to reconstruct a complete RTF es-
timate, based on (1) the remaining values, and (2) the sparsity of
the relative impulse response, which is the time-domain counter-
part of the RTF. We propose two fast algorithms for the RTF re-
construction that solve a second-order cone program (SOCP), and
show their advantages over the LASSO formulation previously pro-
posed in the literature. Simulations with speech signals show that in
terms of speed and accuracy, the proposed algorithms are compara-
ble with the LASSO solution and considerably faster compared to
the generic ECOS solver. The new algorithms are, moreover, eas-
ier to control through their parameters, which brings their improved
stability when the number of reliable frequency bins is very low
(less than 10%).

Index Terms— Beamforming, Relative Transfer Function,
Relative Impulse Response, Sparsity, Proximal Algorithms, Convex
Programming

1. INTRODUCTION

A multi-microphone noisy recording of a directional source can be
modeled in the short-term Fourier transform (STFT) domain as

X(k, `) = H(k)S(k, `) +Y(k, `), (1)

where k and ` are the frequency and the time-frame indexes, respec-
tively. While X,H and Y can be considered three-way arrays, for
fixed k and `, the vector X(k, `) of size M × 1 denotes the STFT
coefficients of signals acquired with the M microphones, and the
scalar S(k, `) represents the STFT of the target signal from the first
(reference) microphone. Elements of H(k) correspond to the in-
dividual relative transfer functions (RTFs) with respect to the first
microphone. For a fixed k, this implies that H(k) is of size M × 1
and its first element is unity. Its other elements depend on the acous-
tic transfer functions between the source and the microphones, and,
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therefore, H(k) is mainly determined by the environment and by
the position of the source and microphones. Notice that H(k) does
not depend on `, meaning that the source is stationary (or at least
approximately stationary for a short time interval). Finally, Y(k, `)
involves noise and interferences in the mixture.

The estimation of H(k) is a central issue in multi-microphone
noise reduction and signal enhancement. Once these RTFs are
known, efficient processors such as the Minimum Variance Distor-
tionless Responses (MVDR) beamformer [1] can be applied in order
to obtain a noise-free estimate of S(k, `). Many methods have been
proposed to estimate H(k) directly from X(k, `). In particular,
an unbiased estimator exploiting the nonstationarity of S(k, `) and
assuming the stationarity of Y(k, `) has been proposed in [2] and
improved for speech signals in [3]. These estimators are computa-
tionally simple, but their applicability is limited due to the assump-
tion imposed on Y(k, `). For more general conditions, methods
based on Blind Source Separation (BSS) were proposed; see, e.g.,
[4, 5, 6]. They are computationally more expensive, nevertheless,
their performance stays limited [7].

Recently, a general approach that aims at improving any RTF
estimator has been proposed in [8]. It is based on the assump-
tion that the RTF can be well approximated in the time-domain
by a sparse relative impulse response (ReIR). As this sparse ReIR
poses a low-rank representation of the RTF, it is possible to esti-
mate it from an incomplete observation of RTF (iRTF), i.e., from
the RTF values known only on a constrained set of frequencies. In
the following, let this set of frequencies be denoted S.

The idea of using iRTF is advantageous from several view-
points. Some signals (especially speech signals) are sparse in the
(short-time) frequency domain, and therefore the signal-to-noise ra-
tio is highly variable over the frequencies. In particular, there are
frequency bins in which the target signal activity is negligible, thus
making any estimate of the RTF meaningless (i.e. too inaccurate).
Avoiding estimation within these “unreliable” frequencies conve-
niently corresponds to the concept of iRTF. If any additional in-
formation about the reliability/accuracy of the RTF estimate across
frequencies is available, it is possible to decide whether a given fre-
quency should or should not be included in S. For example, such
information could be obtained through a theoretical error prediction
[9] or using a model-based or trained voice activity (speech mask)
detectors [10, 11].

The paper addresses the key step, which is the completion of the
iRTF. In [8], it has been suggested that convex programming formu-
lations should be exploited, specifically the weighted LASSO [12],
where the weights help controlling the sparsity of the solution (the
ReIR estimate). However, selecting the weights is a difficult prob-
lem as the effect of the weights on the solution cannot be determined
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analytically. Therefore, [9] later proposed to exploit second-order
cone programming (SOCP), whose parametrization has a straight-
forward interpretation.

However, the computational complexity of the general embed-
ded conic solver (ECOS) from [13], used for solving SOCP in [9],
is very high compared to the SpaRIR algorithm proposed in [8] for
weighted LASSO. In the present paper, we therefore derive two
proximal algorithms solving the same SOCP problem as ECOS,
having a complexity comparable to that of SpaRIR. Moreover, the
computational complexity of the new algorithms is virtually inde-
pendent of the number of elements in S. It is thus possible to recast
the problem of selecting S, which is a combinatorial problem, as the
selection of the SOCP parameters, which is a continuous problem
(the details will be presented below Eq. (3)).

The following section presents the original SpaRIR and SOCP
formulations from [9]. Section 3 is devoted to the solution of the
SOCP program, using fast proximal algorithms. Section 4 presents
experiments with speech signals.

2. PROBLEM FORMULATION

For microphonem, let the respective relative impulse responses, i.e.
the time-domain counterpart of H(k), be denoted hm. It is a real-
valued vector; suppose that its length isN and thatN is even. Since
hm can be estimated independently of the other ReIRs, we drop
the index without loss of generality and consider a single h in the
following.

The estimate of H(k), denoted Ĥ(k), which alone is available
in practice, is not equally reliable over the frequencies k. Suffi-
ciently accurate elements of Ĥ(k) correspond to the choice of S.
This set of frequencies is restricted to S ⊆ {0, . . . , N/2} due to the
spectrum conjugate symmetry. The operator of the Discrete Fourier
Transform (DFT), denoted F , is assumed to be unitary. The opera-
tor FS : CN → C|S| is a subsampled DFT, and it outputs spectral
values belonging solely to the indexes S. FS could be seen as a DFT
matrix where rows not indexed in S are omitted. L∗ is the notation
for the adjoint to a linear operator L.

An entry within a vector, say x, at position n = 0, . . . , N − 1
will be referred to as xn or [x]n. The complex conjugate of x ∈ C
will be denoted x.

2.1. Weighted LASSO formulation

The method in [8] aims to find the sparsest representation of the
incomplete RTF in the time domain using weighted LASSO [12,
14]. The reconstructed ReIR is sought as the solution to

arg min
h

‖FSh− µ‖22 + ‖w � h‖1, (2)

where µ is an |S| × 1 complex vector representing the iRTF, with
elements µk = Ĥ(k), k ∈ S; w is a vector of nonnegative weights,
multiplied elementwise by the unknown h. This problem can be
interpreted as finding a sparse impulse response, which is penalized
when its Fourier transform moves away from the prescribed spectral
values. Moreover, the time-domain sparsity is affected by weight-
ing. As a surrogate of the true sparsity measure we use the `1-norm,
see [15], for example.

There is a number of fast algorithms for solving such a problem,
for example proximal algorithms, which are discussed in Sec. 3.
A disadvantage of LASSO formulation lies in the difficulty of de-
scribing the impact of the weights w on the solution.

2.2. SOCP formulation

This formulation is derived from a different point of view. A sparse
vector h is sought such that at the frequencies in S, the spectrum of
h is not far away from the prescribed complex values µk, k ∈ S:

arg min
h

‖h‖1 s.t.
∣∣[Fh]k − µk

∣∣ ≤ εk, k ∈ S, and h ∈ RN .

(3)
The parameters εn determine maximal errors of the spectral coeffi-
cients of h. Both moduli and phases are taken into account. From
a certain point of view, it is also possible to say k ∈ {0, . . . , N/2}
and to set εk for all unreliable frequencies k /∈ S very high.

Recall thatN is assumed to be even. Then, due to the properties
of the DFT, the constraint h ∈ RN is equivalent to saying that

[Fh]k = [Fh]N−k for k = 1, . . . , N/2− 1, (4)

[Fh]0 ∈ R, [Fh]N/2 ∈ R, (5)

the bar denoting the complex conjugate. Therefore, problem (3) is
equivalent to the following unconstrained one:

arg min
h

‖h‖1 + χC(h), (6)

where χC is the indicator function of the convex set C, defined as

C = {z |
∣∣[Fz]k − µk

∣∣ ≤ εk, k ∈ S, and (4), (5) hold}. (7)

In order to be able to find efficient algorithms, it will be conve-
nient to develop a new form of the same problem, which reads

arg min
h

‖h‖1 + χC′(FSh), (8)

with C′ defined as

C′ = {x | |xk − µk| ≤ εk, k ∈ S,
xk = xN−k for k = 1, . . . , N/2− 1, x0, xN

2
∈ R}. (9)

Note that problem (3) is a special case of a large class of second-
order cone programs. In fact, it falls into a subclass termed “convex
quadratically constrained linear programs”.

3. PROBLEM SOLUTION

Problem (8) is convex since C′ is a convex set, and both ‖ · ‖1
and χC′ are convex functions. For finding the minimizer of a sum
of convex functions, proximal algorithms [16, 17] are a popular
choice. We first present some necessary ingredients that will be
needed to adapt proximal algorithms to our problem.

3.1. Proximal operators

The proximal algorithms are iterative. They rely on evaluating the
so-called proximal operator of individual convex functions in each
iteration. The proximal operator of f is a mapping proxf : RN →
RN with many essential properties [18, 16]. In particular, we will
later make use of two cases, namely

proxλ‖·‖1(x) = softλ(x) (10)

i.e. the soft thresholding [19, 14, 20] with threshold λ, mapping
elementwise xn → sgn(xn) ·max(|xn| − λ, 0), and

proxχC
(x) = projC(x), (11)
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i.e. the orthogonal projection onto a convex set C.
Furthermore, there is a special rule if f is a composite function

involving a linear operator L with the property that LL∗ is just a
multiple of the identity:

Lemma 1 (see [16], Table 10.1.x for the real case). If f = g ◦ L is
a composition of a convex function g with a linear operator L such
that LL∗ = ν · Id with ν > 0, it holds

proxf (x) = x+ ν−1L∗
(
proxνg(Lx)− Lx

)
. (12)

Now, denote B2(µ, ε) the ball of radius ε > 0 centered at µ ∈
C, i.e. B2(µ, ε) is the set of complex points at most ε far from µ. It
is not too difficult to see that

Lemma 2. Projection of x ∈ C onto the ball B2(µ, ε) is

projB2(µ,ε)
(x) =

ε(x− µ)
max(|x− µ| , ε) + µ. (13)

As the last ingredient, let the proximal operator proxχC′ be
identified, where C′ has been defined in (9). According to (11), it
is the projection of an x ∈ C, formally

projC′(x) = arg min
w∈CN

‖w − x‖22 s.t. w ∈ C′. (14)

As will become clear later, the input of the projection onto C′ will
always be a complex conjugate vector, i.e. a vector x that satisfies
the conditions set out on the second line of (9). Together with the
fact that the quadratic functional in (14) is separable (up to pairs of
indexes [k,N − k] for k = 1, . . . , N/2− 1) this results in the fact
that the projection is implemented elementwise:

[projC′(x)]k =

{
projB2(µk,εk)

(xk) for k ∈ S
xk for k 6∈ S.

(15)

3.2. Proximal algorithms

We utilize two numerical solvers, namely the Douglas-Rachford
(DR) algorithm and the Chambolle-Pock (CP) algorithm.

The DR algorithm [16] was designed for optimization problems
that do not involve a linear operator. Therefore, formulation (6) is
the right basepoint for DR; nevertheless, writing χC = χC′ ◦ FS
and using the fact that FSF ∗S = Id , we find that Lemma 1 with
ν = 1 can be applied to obtain

proxχC
(x) = projC(x) = x+F ∗S (projC′(FSx)− FSx) . (16)

The DR algorithm is given in Alg. 1. The DR algorithm always con-
verges; the single parameter γ is responsible for the convergence
speed. In our scenario, γ plays the role of the threshold for soft
thresholding. The iterations are terminated if a convergence cri-
terion is met. If convergence is not fully achieved, an additional
projection step can be appended right after the last loop of the algo-
rithm: The soft thresholding is responsible for sparsifying the vec-
tor, which can lead to violating the spectral restriction. The natural
final step is thus projecting the frequencies in S onto the constraints
and applying the inverse DFT.

The CP algorithm [21] is a primal-dual algorithm developed to
solve problems where one of the functions is composed with a lin-
ear operator. This perfectly corresponds to the formulation in (8).
The steps of the CP algorithm are formally given in Alg. 2. The
convergence is guaranteed whenever ζσ‖FS‖ = ζσ < 1, while

Algorithm 1: Douglas-Rachford algorithm solving (8)

Input: Starting point y(0)∈ RN , λ = 1 and γ > 0
for i = 0, 1, . . . do

u(n) = FS y
(n)

x(n) = y(n) + F ∗S

(
projC′(u(n))− u(n)

)
y(n+1) = y(n) + λ

(
softγ(2x

(n) − y(n))− x(n)
)

return y(n+1)

Algorithm 2: Chambolle-Pock algorithm solving (8)

Input: Starting primal point p(0) ∈ RN and dual point
q(0) ∈ C|S|, parameters ζ, σ > 0 and θ ∈ [0, 1]

Set ṗ(0) = p(0)

for i = 0, 1, . . . do
u(n) = q(n) + σFS ṗ

(n)

q(n+1) = u(n) − projC′(u(n)/σ)

p(n+1) = softζ(p
(n) − ζF ∗S q(n+1))

ṗ(n+1) = p(n+1) + θ(p(n+1) − p(n))

return ṗ(n)

the actual values of the respective parameters influence the speed of
convergence.

Both algorithms are comparable in terms of the computational
cost per iteration. When addition of vectors and multiplication by
scalar is neglected, both CP and DR perform one projC′ , one soft,
one FS and one F ∗S in each iteration. Despite the utilization of
the FFT in place of the DFT, the application of FS and F ∗S with
O(N log2N) complexity dominates the computational cost.

One can observe a slight increase in computational time as the
size of S increases: The soft thresholding always operates on a full-
length vector, and FS and F ∗S are implemented using full FFT and
IFFT, respectively. Hence, the only factor that influences the speed
in the mentioned respect is the projection onto C′ — the larger the
set S, the more projections with (13) are computed.

In case that the number of reliable frequencies is very low, using
the pruned FFT [22] or the (easily paralellizable) Goertzel algorithm
[23, 24, 25] may be favorable over the full FFT.

Returning back to problem (2), we can see that the first term
there is differentiable. This allows solving the problem using
SpaRIR, an algorithm based on the forward-backward proximal
scheme [16]. SpaRIR requires application of the operators FS and
F ∗S in the forward step (using the FFT), and a weighted soft thresh-
olding in the backward step. This makes SpaRIR slightly faster than
the CP and DR algorithms, as will be shown by the experiment.

4. EXPERIMENTS

We restrict ourselves to the case of M = 2 microphones for sim-
plicity, nevertheless, the generalization to a higher number of mi-
crophones is straightforward.

As the target signal, we use a 10 seconds long female utter-
ance from SiSEC 20131 from the task “Two-channel mixtures of
speech and real-world background noise”. The spatial image of the

1http://sisec.wiki.irisa.fr/
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target is generated by convolving the signal with real-world room
impulse responses (RIR) from [26] available online2. The two mi-
crophones are placed such that their mutual distance is 3 cm. Sim-
ilarly, noise is generated by convolving Gaussian white noise with
RIRs corresponding to a different position. This simulates a di-
rectional noise such as a fan noise. The reverberation time T60 is
610ms; the source–microphone distance is 2m. The target and the
noise source are located, respectively, in the direction of 0◦ and 75◦

on the left-hand side; the sampling frequency is 16 kHz.
The data is generated in 100 trials. In each trial, a random inter-

val of the target signal of T seconds in length is mixed with a newly
generated noise at 0 dB signal-to-noise ratio (SNR); the SNR is av-
eraged over both microphones. After transforming the mixed sig-
nals into the STFT domain (FFT length 1024 and hop-size 256), the
spectra are analyzed, and the set S is selected. Two methods are
considered in this regard: the oracle approach exploiting the known
SNR within each frequency and the non-oracle method based on the
kurtosis of the frequency components [8]. S is selected such as to
contain p percent of the frequencies with the highest SNR/kurtosis.
Both variants aim to select frequencies where the speech is domi-
nant.

Next, the nonstationarity-based RTF estimator from [2] is used
to estimate the RTF between the microphones; let the estimate be
denoted Ĥ. The iRTF is obtained by taking only the subvector of Ĥ
whose elements are in S. Then, LASSO and SOCP formulations are
used to reconstruct the iRTF. In LASSO, the weights are selected as
recommended in [8], while in SOCP the theoretical variance of the
estimator is used to select εk for k ∈ S [9]. For any k /∈ S, we
choose a practical approach to set εk = 100, which is a sufficiently
high value that guarantees that the value Ĥ(k) does not influence
the reconstruction of iRTF.

Let the reconstructed RTF be denoted G. We evaluate G by
measuring SNR when it is used to block the target signal. Specifi-
cally, the output of the blocking is

V (k, `) = G(k)X1(k, `)−X2(k, `). (17)

If G were the exact RTF between the two channels, V (k, `) would
contain only the noise signal, but with the spectrum modified by an
unknown filter. To avoid the influence of that filter on the output
SNR, we apply least squares: The spectrum of V (k, `) is modified
to be as close to the spectrum of the true noise image on a given
microphone as possible. Projections on both microphones are con-
sidered. The SNR is afterwards evaluated and averaged.

Fig. 1 shows the results obtained using weighted LASSO (com-
puted by SpaRIR from [8]) and SOCP in combination with the two
variants of selecting S; the SNR as a function of p is depicted.
For p = 100%, all approaches give the same result (except for
small deviations) corresponding to the original RTF estimator. For
p < 100%, the results correspond to the RTF completion from the
iRTF (using p percent of frequencies).

LASSO and SOCP give approximately the same results for
p > 10% with both selection methods. The results with the ora-
cle selection are obviously better than those with the kurtosis-based
method for most values of p. An optimum percentage appears to
be within the interval from p = 15 to p = 20 for both selectors.
These values are in good agreement with a typical number of active
frequencies of a speech signal at short time intervals. The results
here confirm the general claims of [8]: With the reconstructed iRTF

2http://www.eng.biu.ac.il/gannot/downloads/
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Figure 1: Average SNR at the output of the target signal blocking
(smaller values are better) obtained in 100 trials on 1 s (left) and 2 s
intervals (right).

(using frequencies with high SNR) it is possible to achieve better
target signal blocking than with the complete RTF estimate.

The results for p < 10% point to an advantage of SOCP over
LASSO. While the SNR of LASSO grows when p approaches zero
(i.e. target blocking becomes poor), SOCP gives stable performance
also for small p. This is achieved thanks to constraining deviations
from the selected spectral values in SOCP (while LASSO is uncon-
strained in this respect).

The solutions obtained using the Chambolle-Pock and Douglas-
Rachford algorithms (both with a fixed number of 600 iterations)
as well as by using the ECOS package [13] were identical (and
are therefore not compared in Fig. 1). The computational time per
trial (averaged over all the values of p in consideration) was 0.17 s,
0.13 s, and 20.3 s, respectively, meaning that ECOS is considerably
slower for the particular optimization problem solved here than the
methods proposed in this paper. The average computational time
by SpaRIR was 0.06 s; however, SpaRIR automatically stops after a
variable number of iterations. The average time per iteration of the
CP, DR, and SpaRIR, was 0.14 ms, 0.11 ms, and 0.12 ms, respec-
tively.

Software. The experiments were performed in Matlab R2016b on
a PC with 2.6 GHz Intel i7 CPU and 8 GB RAM. An interested
reader can download the Matlab files from the GitHub repository.3

The folder synthetic provides a demo showing the CP and DR
algorithms recovering a synthetic sparse signal. The demo gener-
ates a random problem in each run. The folder speech reproduces
experiment with the speech signal, as presented in this paper.

5. CONCLUSION

The main message of the paper is that the reconstruction of iRTF
through LASSO can be replaced with a reconstruction through
SOCP, using fast proximal algorithms such as the Chambolle-Pock
or the Douglas-Rachford algorithm. SOCP performs comparably
with LASSO. In addition, SOCP is stable as compared to LASSO
when only a small number of frequencies (less than 10%) are used
for the RTF estimation. The other advantage of the solution pro-
posed here is that, in SOCP, the (discrete) problem of the selection
of S can be recast to the (continuous) problem of selection of εk for
all k. The computational complexity per iteration of the Chambolle-
Pock or the Douglas-Rachford algorithms is virtually independent
of the size of S in contrast to the case of the ECOS solver.

3https://github.com/rajmic/sparse-ReIR-proximal
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